reference frequency
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 57)

H-INDEX

14
(FIVE YEARS 4)

Author(s):  
Diana Schoeppler ◽  
Annette Denzinger ◽  
Hans-Ulrich Schnitzler

Doppler shift (DS) compensating bats adjust in flight the second harmonic of the constant-frequency component (CF2) of their echolocation signals so that the frequency of the Doppler shifted echoes returning from ahead is kept constant with high precision (0.1-0.2%) at the so-called reference frequency (fref). This feedback adjustment is mediated by an audio-vocal control system which correlates with a maximal activation of the foveal resonance area in the cochlea. Stationary bats adjust the average CF2 with similar precision at the resting frequency (frest), which is slightly below the fref. Over a variety of time periods (from minutes up to years) variations of the coupled fref and frest have been observed, and were attributed to age, social influences and behavioural situations in rhinolophids and hipposiderids, and to body temperature effects and flight activity in Pteronotus parnellii. We assume that, for all DS compensating bats, a change in body temperature has a strong effect on the activation state of the foveal resonance area in the cochlea which leads to a concomitant change in emission frequency. We tested our hypothesis in a hipposiderid bat, Hipposideros armiger, and measured how the circadian variation of body temperature at activation phases affected frest. With a miniature temperature logger, we recorded the skin temperature on the back of the bats simultaneously with echolocation signals produced. During warm-up from torpor strong temperature increases were accompanied by an increase in frest, of up to 1.44 kHz. We discuss the implications of our results for the organization and function of the audio-vocal control systems of all DS compensating bats.


2022 ◽  
Author(s):  
Hiroki Ohara ◽  
Shoichi Hasegawa

Abstract Conventional EMS technology cannot stimulate deep muscles to induce muscle contraction using surface electrodes. Several treatments use electrical stimulation for various neurological conditions, including stroke and spinal cord injury. One such treatment is functional electrical stimulation (FES), a form of rehabilitation in which electrical muscle stimulation (EMS) is provided while the muscles are being moved. Here, we show whether two interfering electrical stimulation pulses could stimulate the deep muscles of the forearm to control muscle contraction. The results showed that the strongest torques were generated across the subjects when the reference frequency was mid-frequency (4,000 Hz) and the beat frequencies were low (20 Hz, 40 Hz, 80 Hz, 160 Hz and 320 Hz). This study is the first counterexample to demonstrate that it is possible to control muscle contraction in the deep muscles of the forearm using surface electrodes, which was previously thought to be impossible.


2021 ◽  
Vol 12 (4) ◽  
pp. 323-331
Author(s):  
A. V. Isaev ◽  
U. V. Suchodolov ◽  
A. S. Sushko ◽  
A. A. Sheinikau

In modern diagnostics, much attention is paid to measuring of time parameters, as well as their change over time. The purpose of this work is to develop a method for measuring of time intervals which made it possible to increase the measurement accuracy by reducing errors associated with the instability of main parameters of the pulse signal.In the most of approaches used, the error associated with the instability of main parameters of signals under study is not enough taken into account. As an alternative, a spectral method is proposed in which the measurement of time intervals, as well as their changes, is performed based on the analysis of pulse sequences formed on the basis of characteristic points of the measured signal. For this a double pulse sequence was considered, an equation for the amplitudes of its spectral components was obtained, and in accordance with this it was determined that the delay time between double pulses is the most informative parameter.Using the Mathcad software, an analysis of the sensitivity regions was carried out for the change in the main parameters of the pulse sequence, namely the repetition rate, as the main destabilizing factor.As a result of the implementation of the developed technique, a structural diagram of the measuring system is proposed and an analysis of the measurement error associated with the instability of the main parameters of the pulse sequence is carried out. This error is estimated to be less than 0.01 %.The considered method makes it possible to increase the accuracy of measuring time intervals due to the almost complete elimination of the influence of the instability of the reference frequency and the amplitude of the generated pulses which is unattainable with modern hardware, including digital signal processing. 


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8506
Author(s):  
Yahua Yang ◽  
Xingyao Yin ◽  
Bo Zhang ◽  
Danping Cao ◽  
Gang Gao

Seismic wave exhibits the characteristics of anisotropy and attenuation while propagating through the fluid-bearing fractured or layered reservoirs, such as fractured carbonate and shale bearing oil or gas. We derive a linearized reflection coefficient that simultaneously considers the effects of anisotropy and attenuation caused by fractures and fluids. Focusing on the low attenuated transversely isotropic medium with a vertical symmetry axis (Q-VTI) medium, we first express the complex stiffness tensors based on the perturbation theory and the linear constant Q model at an arbitrary reference frequency, and then we derive the linearized approximate reflection coefficient of P to P wave. It decouples the P- and S-wave inverse quality factors, and Thomsen-style attenuation-anisotropic parameters from complex P- and S-wave velocity and complex Thomsen anisotropic parameters. By evaluating the reflection coefficients around the solution point of the interface of two models, we analyze the characteristics of reflection coefficient vary with the incident angle and frequency and the effects of different Thomsen anisotropic parameters and attenuation factors. Moreover, we realize the simultaneous inversion of all parameters in the equation using an actual well log as a model. We conclude that the derived reflection coefficient may provide a theoretical tool for the seismic wave forward modeling, and again it can be implemented to predict the reservoir properties of fractures and fluids based on diverse inversion methods of seismic data.


Author(s):  
Xiaolin Liu ◽  
Zhoujian Cao ◽  
Zong-Hong Zhu

Abstract We have previously constructed a waveform model, SEOBNRE, for spinning binary black hole moving along eccentric orbit based on effective-one-body (EOB) formalism. In the current paper, we update SEOBNRE waveform model in the following three respects. Firstly, we update the EOB dynamics from SEOBNRv1 to SEOBNRv4. Secondly we properly treat the Schott term which has been ignored in previous SEOBNRE. Thirdly, we construct a new factorized waveform including (l,|m|)=(2,2),(2,1),(3,3),(4,4) modes based on effective-one-body (EOB) formalism, which is valid for spinning binary black holes (BBH) in general equatorial orbit. Following our previous SEOBNRE waveform model, we call our new waveform model SEOBNREHM. The (l,|m|)=(2,2) mode waveform of SEOBNREHM can fit the original SEOBNRv4 waveform very well in the case of a quasi-circular orbit. We have validated SEOBNREHM waveform model through comparing the waveform against the Simulating eXtreme Spacetimes (SXS) catalog. The comparison is done for BBH with total mass in (20,200)M_sun using Advanced LIGO designed sensitivity. For the quasi-circular cases we have compared our (2,2) mode waveforms to the 281 numerical relativity (NR) simulations of BBH along quasi-circular orbits. All of the matching factors are bigger than 98\%. For the elliptical cases, 24 numerical relativity simulations of BBH along an elliptic orbit are used. For each elliptical BBH system, we compare our modeled gravitational polarizations against the NR results for different combinations of the inclination angle, the initial orbit phase and the source localization in the sky. We use the minimal matching factor respect to the inclination angle, the initial orbit phase and the source localization to quantify the performance of the higher modes waveform. We found that after introducing the higher modes, the minimum of the minimal matching factor among the 24 tested elliptical BBHs increases from 90\% to 98\%. Our SEOBNREHM waveform model can match all tested 305 SXS waveforms better than 98\% including highly spinning ($\chi=0.99$) BBH, highly eccentric ($e\approx0.6$ at reference frequency $Mf_0=0.002$) BBH and large mass ratio ($q=10$) BBH.


2021 ◽  
Vol 923 (2) ◽  
pp. L22
Author(s):  
Zaven Arzoumanian ◽  
Paul T. Baker ◽  
Harsha Blumer ◽  
Bence Bécsy ◽  
Adam Brazier ◽  
...  

Abstract We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of γ = 5 and a reference frequency of f yr = 1 yr−1. Among the upper limits for eight general families of metric theories of gravity, we find the values of A TT 95 % = ( 9.7 ± 0.4 ) × 10 − 16 and A ST 95 % = ( 1.4 ± 0.03 ) × 10 − 15 for the family of metric spacetime theories that contain both TT and ST modes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qin Yu ◽  
Zenglin Cai ◽  
Cunhua Li ◽  
Yulong Xiong ◽  
Yang Yang ◽  
...  

Many studies reported that spontaneous fluctuation of the blood oxygen level-dependent signal exists in multiple frequency components and changes over time. By assuming a reliable energy contrast between low- and high-frequency bands for each voxel, we developed a novel spectrum contrast mapping (SCM) method to decode brain activity at the voxel-wise level and further validated it in designed experiments. SCM consists of the following steps: first, the time course of each given voxel is subjected to fast Fourier transformation; the corresponding spectrum is divided into low- and high-frequency bands by given reference frequency points; then, the spectral energy ratio of the low- to high-frequency bands is calculated for each given voxel. Finally, the activity decoding map is formed by the aforementioned energy contrast values of each voxel. Our experimental results demonstrate that the SCM (1) was able to characterize the energy contrast of task-related brain regions; (2) could decode brain activity at rest, as validated by the eyes-closed and eyes-open resting-state experiments; (3) was verified with test-retest validation, indicating excellent reliability with most coefficients > 0.9 across the test sessions; and (4) could locate the aberrant energy contrast regions which might reveal the brain pathology of brain diseases, such as Parkinson’s disease. In summary, we demonstrated that the reliable energy contrast feature was a useful biomarker in characterizing brain states, and the corresponding SCM showed excellent brain activity-decoding performance at the individual and group levels, implying its potentially broad application in neuroscience, neuroimaging, and brain diseases.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2077
Author(s):  
Peng Li ◽  
Tian Tian ◽  
Bin Wu ◽  
Tianchun Ye

This article presents a novel self-biased phase-locked loop (PLL) scheme for wireless local area network (WLAN) applications. A novel self-biased circuit that contains a current mirror circuit and a variable resistor circuit related to the frequency division ratio are proposed. The proposed self-biased PLL scheme achieves a fixed damping factor. Moreover, the self-biased technology allows the PLL loop bandwidth to track the input reference frequency and division ratio. The proposed start-up circuit speeds up the locking of the PLL. In addition, the proposed differential-to-single-ended (DTS) converter can guarantee a 50% duty cycle without operating the PLL at twice the chip operating frequency. The proposed self-biased PLL is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 55 nm CMOS process. The measured root-mean-square jitter (RMS-jitter) integrated of PLL is 2.4 ps with a dissipation of 8.6 mW, and the resulting figure-of-merit is −223.05 dBc/Hz.


Author(s):  
Mateus B. Castro ◽  
Raphael R. N. Souza ◽  
Agord M. P. Junior ◽  
Eduardo R. Lima ◽  
Leandro T. Manera

AbstractThis paper presents the complete design of a phase locked loop-based clock synthesizer for reconfigurable analog-to-digital converters. The synthesizer was implemented in TSMC 65 nm CMOS process technology and the presented results were obtained from extracted layout view with parasitics. The synthesizer generates clock frequencies ranging from 40 to 230 MHz considering a reference frequency of 10 MHz and a supply voltage of 1.2 V. Worst case current consumption is 634 $$\mu $$ μ W, settling time is 6 $$\mu $$ μ s, maximum jitter is 1.3 ns in a 0.037 mm$$^2$$ 2 area. Performance was validated in a test $$\Sigma \Delta $$ Σ Δ Modulator with bandwidths of 200 kHz, 500 kHz and 2 MHz, and oversampling frequencies of 40, 60 and 80 MHz respectively, with negligible signal-to-noise ratio degradation compared to an ideal clock.


Sign in / Sign up

Export Citation Format

Share Document