Functional traits of leaves and forest structure of neotropical mangroves under different salinity and nitrogen regimes

Flora ◽  
2018 ◽  
Vol 239 ◽  
pp. 52-61 ◽  
Author(s):  
Jenny Alexandra Rodríguez- Rodríguez ◽  
José Ernesto Mancera Pineda ◽  
Luz Marina Melgarejo ◽  
Jairo Humberto Medina Calderón
2014 ◽  
Vol 328 ◽  
pp. 1-9 ◽  
Author(s):  
Matthew B. Russell ◽  
Christopher W. Woodall ◽  
Anthony W. D’Amato ◽  
Grant M. Domke ◽  
Sassan S. Saatchi

2021 ◽  
Vol 9 ◽  
Author(s):  
María Monge González ◽  
Patrick Weigelt ◽  
Nathaly Guerrero-Ramírez ◽  
Dylan Craven ◽  
Gonzalo Castillo-Campos ◽  
...  

Here, we describe BIOVERA-Tree, a database on tree diversity, community composition, forest structure and functional traits collected in 120 forest plots, distributed along an extensive elevational gradient in Veracruz State, Mexico. BIOVERA-Tree includes information on forest structure from three levels of forest-use intensity, namely old-growth, degraded and secondary forest, replicated across eight elevations from sea-level to near the tree line at 3500 m and on size and location of 4549 tree individuals with a diameter at breast height ≥ 5 cm belonging to 216 species, 154 genera and 80 families. We also report measurements of eight functional traits, namely wood density for 143 species, maximum height for 216 species and leaf traits including: specific leaf area, lamina density, leaf thickness, chlorophyll content and leaf area for 148 species and leaf dry matter content for 145 species. BIOVERA-Tree is a new database comprising data collected in a rigorous sampling design along forest-use intensity and elevational gradients, contributing to our understanding of how interactive effects of forest-use intensity and elevation affect tree diversity, community composition and functional traits in tropical forests.


2013 ◽  
Vol 10 (9) ◽  
pp. 15415-15454 ◽  
Author(s):  
G. P. Asner ◽  
C. Anderson ◽  
R. E. Martin ◽  
D. E. Knapp ◽  
R. Tupayachi ◽  
...  

Abstract. Elevation gradients provide opportunities to explore environmental controls on forest structure and functioning, but plot-based studies have proven highly variable due to limited geographic scope. We used airborne imaging spectroscopy and LiDAR (light detection and ranging) to quantify changes in three-dimensional forest structure and canopy functional traits in a series of 25 ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Canopy greenness, photosynthetic fractional cover and exposed non-photosynthetic vegetation varied as much across lowland forests (100–200 m) as they did from the lowlands to the Andean treeline (3400 m). Elevation was positively correlated with canopy gap density and understory vegetation cover, and negatively related to canopy height and vertical profile. Increases in gap density were tightly linked to increases in understory plant cover, and larger gaps (20–200 m2 produced 25–30 times the response in understory cover than did smaller gaps (< 5 m2. Scaling of gap size to gap frequency was, however, relatively constant along the elevation gradient, which when combined with other canopy structural information, indicates equilibrium turnover patterns from the lowlands to treeline. Our results provide a first landscape-scale quantification of forest structure and canopy functional traits with changing elevation, thereby improving our understanding of disturbance, demography and ecosystem processes in the Andes-to-Amazon corridor.


2021 ◽  
Author(s):  
María Monge González ◽  
Patrick Weigelt ◽  
Nathaly Guerrero-Ramírez ◽  
Dylan Craven ◽  
Gonzalo Castillo-Campos ◽  
...  

Here, we describe BIOVERA-Tree, a database on tree diversity, community composition, forest structure, and functional traits collected in 120 forest plots distributed along an extensive elevational gradient in Veracruz State, Mexico. BIOVERA-Tree includes information on forest structure from three levels of forest-use intensity, namely old-growth, degraded, and secondary forest, replicated across eight elevations from sea-level to near the tree line at 3500 m and on size and location of 4549 tree individuals with a diameter at breast height ≥ 5 cm belonging to 216 species, 154 genera, and 80 families. We also report measurements of eight functional traits, namely wood density for 143 species, maximum height for 216 species and leaf traits including: specific leaf area, lamina density, leaf thickness, chlorophyll content, and leaf area for 148 species and leaf dry matter content for 145 species. BIOVERA-Tree is a new database comprising data collected in a rigorous sampling design along forest-use intensity and elevational gradients, contributing to our understanding of how interactive effects of forest-use intensity and elevation affect tree diversity, community composition, and functional traits in tropical forests.


2014 ◽  
Vol 11 (3) ◽  
pp. 843-856 ◽  
Author(s):  
G. P. Asner ◽  
C. B. Anderson ◽  
R. E. Martin ◽  
D. E. Knapp ◽  
R. Tupayachi ◽  
...  

Abstract. Elevation gradients provide opportunities to explore environmental controls on forest structure and functioning. We used airborne imaging spectroscopy and lidar (light detection and ranging) to quantify changes in three-dimensional forest structure and canopy functional traits in twenty 25 ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Elevation was positively correlated with lidar-estimated canopy gap density and understory vegetation cover, and negatively related to canopy height and the vertical partitioning of vegetation in canopies. Increases in canopy gap density were tightly linked to increases in understory plant cover, and larger gaps (20–200 m2) produced 25–30 times the response in understory cover than did smaller gaps (< 5 m2). Vegetation NDVI and photosynthetic fractional cover decreased, while exposed non-photosynthetic vegetation and bare soil increased, with elevation. Scaling of gap size to gap frequency (λ) was, however, nearly constant along the elevation gradient. When combined with other canopy structural and functional trait information, this suggests near-constant canopy turnover rates from the lowlands to treeline, which occurs independent of decreasing biomass or productivity with increasing elevation. Our results provide the first landscape-scale quantification of forest structure and canopy functional traits with changing elevation, thereby improving our understanding of disturbance, demography and ecosystem processes in the Andes-to-Amazon corridor.


2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


2007 ◽  
Vol 3 (2) ◽  
Author(s):  
Aurora Monzon ◽  
António L. Crespí ◽  
Sónia Pinto ◽  
Adriano Castro ◽  
Claúdia P. Fernandes ◽  
...  
Keyword(s):  

Author(s):  
Brandon M. Collins ◽  
Adrian J. Das ◽  
John J. Battles ◽  
Danny L. Fry ◽  
Kevin D. Krasnow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document