leaf functional traits
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 81)

H-INDEX

18
(FIVE YEARS 4)

Phyton ◽  
2022 ◽  
Vol 91 (1) ◽  
pp. 115-128
Author(s):  
Yuanyuan Liu ◽  
Zhen Li ◽  
Lie Xu ◽  
Qiang Fu ◽  
Yongjian Wang

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuebo Su ◽  
Bowen Cui ◽  
Yunjian Luo ◽  
Jia Wang ◽  
Xuming Wang ◽  
...  

An increasing number of studies have focused on the response and adaptation of plants to urbanization by comparing differences in leaf functional traits between urban and rural sites. However, considerable uncertainties remain because differences in land-use type have not frequently been taken into account when assessing the effect of urbanization on leaf traits. In this study, we sampled the needles of Chinese pine (Pinus tabuliformis Carr.) in areas with three land-use types (roadsides, parks, and neighborhoods) along an urban–rural gradient in Beijing, China to determine the effect of urbanization on leaf functional traits. There were significant differences in the values of leaf functional traits between the needles of the current and previous year and across land-use types. Pines growing on roadsides had leaves with smaller length, width, and area, as well as lower stomatal density, compared with those growing in parks and neighborhoods. This implies that on roadsides, plant capacity to acquire resources (e.g., light and carbon dioxide) was degraded. Stomatal density, leaf width, and leaf P concentration increased with increasing distance from the city center, while leaf K concentration decreased with increasing distance from the city center. Importantly, there were significant differences in the urban–rural gradient of leaf functional traits between leaves of different ages, and across land-use types. Leaf age was the most important factor influencing leaf nutrient traits, while land-use type was the most important factor influencing leaf morphological traits in urban environments. Thus, considering the effects of the plant characteristic and land-use type on traits is important for assessing the urban–rural gradients of plant functional traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Rawat ◽  
Kusum Arunachalam ◽  
Ayyandar Arunachalam ◽  
Juha M. Alatalo ◽  
Rajiv Pandey

AbstractLeaf functional traits support plant survival and growth in different stress and disturbed conditions and respond according to leaf habit. The present study examined 13 leaf traits (3 morphological, 3 chemical, 5 physiological, and 2 stoichiometry) of nine dominant forest tree species (3 coniferous, 3 deciduous broad-leaved, 3 evergreen broad-leafed) to understand the varied response of leaf habits. The hypothesis was to test if functional traits of the conifers, deciduous and evergreen differ significantly in the temperate forest and to determine the applicability of leaf economic theory i.e., conservative vs. acquisitive resource investment, in the temperate Himalayan region. The attributes of the functional traits i.e., leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf water content (LWC), stomatal conductance (Gs), and transpiration (E) followed the order deciduous > evergreen > coniferous. Leaf carbon and leaf C/N ratio showed the opposite pattern, coniferous > evergreen > deciduous. Chlorophyll (Chl) and photosynthetic rate (A) were highest for evergreen species, followed by deciduous and coniferous species. Also, structural equation modelling determined that morphological factors were negatively related to physiological and positively with chemical factors. Nevertheless, physiological and chemical factors were positively related to each other. The physiological traits were mainly regulated by stomatal conductance (Gs) however the morphological traits were determined by LDMC. Stoichiometry traits, such as leaf C/N, were found to be positively related to leaf carbon, and leaf N/P was found to be positively related to leaf nitrogen. The result of the leaf functional traits relationship would lead to precise prediction for the functionality of the temperate forest ecosystem at the regional scale.


2021 ◽  
Author(s):  
Jules Segrestin ◽  
Nathalie Mondy ◽  
Christelle Boisselet ◽  
Ludivine Guigard ◽  
Thierry Lengagne ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Valeria Guzmán-Jacob ◽  
Patrick Weigelt ◽  
Dylan Craven ◽  
Gerhard Zotz ◽  
Thorsten Krömer ◽  
...  

This data paper describes a new, comprehensive database (BIOVERA-Epi) on species distributions and leaf functional traits of vascular epiphytes, a poorly studied plant group, along gradients of elevation and forest-use intensity in the central part of Veracruz State, Mexico. The distribution data include frequencies of 271 vascular epiphyte species belonging to 92 genera and 23 families across 120 20 m × 20 m forest plots at eight study sites along an elevational gradient from sea level to 3500 m a.s.l. In addition, BIOVERA-Epi provides information on 1595 measurements of nine morphological and chemical leaf traits from 474 individuals and 102 species. For morphological leaf traits, we provide data on each sampled leaf. For chemical leaf traits, we provide data at the species level per site and land-use type. We also provide complementary information for each of the sampled plots and host trees. BIOVERA-Epi contributes to an emerging body of synthetic epiphytes studies combining functional traits and community composition. BIOVERA-Epi includes data on species frequency and leaf traits from 120 forest plots distributed along an elevational gradient, including six different forest types and three levels of forest-use intensity. It will expand the breadth of studies on epiphyte diversity, conservation and functional plant ecology in the Neotropics and will contribute to future synthetic studies on the ecology and diversity of tropical epiphyte assemblages.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 453
Author(s):  
Shanjia Li ◽  
Wei Gou ◽  
Hui Wang ◽  
James F. White ◽  
Guoqiang Wu ◽  
...  

Soil properties affect plant growth and cause variation in leaf functional traits. Lycium ruthenicum Murray is one of the desert dominant shrubs and halophytes in the lower reaches of Heihe River, Northwest China. We analyzed the trade-off relationships of 14 leaf functional traits of eight L. ruthenicum populations growing at varying distances from the river and discussed the effects that soil properties have on leaf functional traits. The results showed that: Lower leaf nitrogen (N) content indicated that L. ruthenicum was located at the slow investment–return axis of the species resource utilization graph. Compared with non-saline and very slightly saline habitats, populations of slightly saline habitats showed a higher carbon to nitrogen ratio (C:N). Redundancy analysis (RDA) revealed a relatively strong relationship between leaf functional traits and soil properties, the first RDA axis accounted for 70.99 and 71.09% of the variation in 0–40 and 40–80 cm of soil properties. Relative importance analysis found that in the 0–40 cm soil layer, leaf traits variations were mainly influenced by soil moisture (SWC), HCO3− and CO32− ions content, while leaf traits variations in the 40–80 cm soil layer were mainly influenced by HCO3− and SO42−. L. ruthenicum has a foliar resource acquisition method and a resource conservation trade-off with a flexible life history strategy in habitats with drought and salinity stress. In the shallow soil layers, water affects leaf traits variation greater than salt , and in both shallow and deep soil layers, HCO3− plays a dominant role on leaf traits. This study provides insights into the adversity adaptation strategies of desert plants and the conservation and restoration of arid-saline ecosystems.


Author(s):  
Solveig Franziska Bucher ◽  
Karl Auerswald ◽  
Christina Grün-Wenzel ◽  
Steven I. Higgins ◽  
Christine Römermann

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


Sign in / Sign up

Export Citation Format

Share Document