Application of scaled particle theory to the partial molar volumes of some tetradentate N2O2 type Schiff bases in ionic liquid+DMF solutions

2013 ◽  
Vol 354 ◽  
pp. 1-5 ◽  
Author(s):  
Rasoul Elhami-Kalvanagh ◽  
Hemayat Shekaari ◽  
Abolfazl Bezaatpour
2002 ◽  
Vol 80 (7) ◽  
pp. 753-760 ◽  
Author(s):  
Jianji Wang ◽  
Yang Zhao ◽  
Kelei Zhuo ◽  
Ruisen Lin

Apparent molar volumes (V2, ϕ ) and standard partial-molar volumes (V20, ϕ ) of LiClO4 and LiBr at 298.15 K have been determined from precise density measurements in solvent mixtures of propylene carbonate (PC) with dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile (AN), and methyl formate (MF). The scaled particle theory is used to calculate the contributions of the cavity formation and the electrolyte-solvent interactions to the standard partial-molar volumes. It is shown that V20, ϕ is strongly dependent on the nature of the solvents, and the trends in V20, ϕ with composition of the solvent mixtures are determined by the interaction volumes of electrolytes with solvents. The results are discussed in terms of ionic preferential solvation, packing effect of solvents in the solvation shell, and electrostriction of solvents by ion.Key words: partial-molar volume, scaled particle theory, lithium salts, propylene carbonate, solvent mixtures, lithium battery electrolytes.


2001 ◽  
Vol 79 (10) ◽  
pp. 1460-1465 ◽  
Author(s):  
Miguel Angel Sánchez ◽  
Ana María Mainar ◽  
Juan Ignacio Pardo ◽  
María Carmen López ◽  
José Santiago Urieta

Solubilities, expressed as mol fractions, of 14 nonpolar gases (He, Ne, Ar, Kr, Xe, H2, N2, O2, CH4, C2H4, C2H6, CO2, CF4, and SF6) in 2,2,2-trifluoroethanol (TFE) at 268.15 and 283.15 K and 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) at 273.15 and 283.15 K, with the partial pressure of gas being 101.33 kPa for all measurements, are reported. Standard changes in the thermodynamic functions (enthalpy and entropy) have been calculated from the solubilities and their variation with temperature. The Scaled Particle Theory (SPT) model has been used to determine these thermodynamic functions and also the partial molar volumes of the gases in the formed solutions.Key words: gas solubilities, nonpolar gases, fluoroalcohols, Scaled Particle Theory.


2012 ◽  
Vol 61 (3) ◽  
pp. 506-509
Author(s):  
V. D. Kiselev ◽  
I. I. Shakirova ◽  
A. I. Konovalov

2013 ◽  
Author(s):  
◽  
Sangeeta Singh

The thermodynamic properties of binary liquid mixtures using an ionic liquid (IL) with alcohols were determined at different temperatures. The ionic liquid used was 1-butyl-3- methylimidazolium methylsulphate [BMIM]+[MeSO4]-. Densities, speed of sound, and refractive indices for the binary mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) were experimentally measured over the whole range of composition at T = (298.15, E 303.15, 308.15, and 313.15) K. From the experimental data, excess molar volumes, V m , E , deviations in refractive isentropic compressibilities, κ s , excess isentropic compressibilities, κ S indices, ∆n, and molar refractions, R, were calculated. The excess partial molar volumes were also calculated at T = 298.15 K. For the binary systems, ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or E E E 1-butanol) V m and κ S are always negative and V m decrease slightly when the temperature increases. The refractive index deviation at T = (298.15, 303.15, 308.15, and 313.15) K is positive over the whole composition range. The measured negative values for excess molar volume of these mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) indicate strong ion-dipole interactions and packing between alcohols and IL are present. The Redlich-Kister smoothing polynomial equation was satisfactorily applied for the E E fitting of the V m , κ S , and ∆n data to give the fitting parameters and the root-mean-square deviations. The Lorentz-Lorenz (L-L) equation was also used to correlate the volumetric property and predict the density or refractive index of the binary mixtures of ionic liquid and the organic solvents. The Lorentz-Lorenz approximation gives a higher σ when used to correlate the iiiexcess molar volumes for the mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol). The L-L equation gives good results for the prediction of density and refractive index. The results are discussed in terms of solute-solute, solute-solvent and solvent- solvent interactions.


2003 ◽  
Vol 81 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Yang Zhao ◽  
Jianji Wang ◽  
Xiaopeng Xuan ◽  
Ruisen Lin

Apparent molar volumes V2,ϕ and standard partial molar volumes V°2,ϕ for tetraethylammonium bromide (Et4NBr), tetrapropylammonium bromide (Pr4NBr), tetrabutylammonium bromide (Bu4NBr), and tetrahexylammonium bromide (Hex4NBr) have been determined at 298.15 K from precise density measurements in solvent mixtures of propylene carbonate (PC) with N,N-dimethylformamide (DMF). Combined with our previous data for LiClO4 and LiBr in the same solvents, ionic molar volumes of Li+, Et4N+, Pr4N+, Bu4N+, Hex4N+, and related anions have been deduced from the extrapolation method suggested by Conway and co-workers. It is shown that the molar volumes of these cations are quite independent of the nature of the solvent and the composition of the solvent mixtures, in contrast to those of ClO4– and Br– anions. This suggests that the Lewis-base-type solvents with similar molecular volumes have similar interactions with Li+. The constancy in partial molar volume for tetraalkylammonium ions provides helpful evidence for the lack of solvation of large tetraalkylammonium cations in organic solvents. These findings have been interpreted using scaled-particle theory. The results are discussed in terms of ion solvation, packing effects of solvent molecules in the solvation shell, and the electrostriction of solvents.Key words: ionic volumes, propylene carbonate, N,N-dimethylformamide, solvent mixtures, solvation, lithium batteries.


1998 ◽  
Vol 63 (4) ◽  
pp. 507-514
Author(s):  
Madan L. Parmar ◽  
Ch. V. Nageshwara Rao ◽  
Suresh Chand Attri

Partial molar volumes of ammonium aluminium sulfate and potassium aluminium sulfate in DMF-water mixtures (5-20 wt.% of DMF) have been determined from solution density measurements at various temperatures and electrolyte concentrations. The data were evaluated by using Masson equation and the obtained parameters were interpreted in terms of ion-solvent and ion-ion interactions. Both electrolytes have been found to act as the structure makers/promotors in DMF-water systems.


Author(s):  
Jorge Álvarez Juliá ◽  
María Del Carmen Grande ◽  
Carmen Raquel Barrero ◽  
Carlos Miguel Marschoff

Sign in / Sign up

Export Citation Format

Share Document