scaled particle theory
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 7)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 17 (7) ◽  
pp. e1009140
Author(s):  
Liliana Angeles-Martinez ◽  
Vassily Hatzimanikatis

The metabolic capabilities of the species and the local environment shape the microbial interactions in a community either through the exchange of metabolic products or the competition for the resources. Cells are often arranged in close proximity to each other, creating a crowded environment that unevenly reduce the diffusion of nutrients. Herein, we investigated how the crowding conditions and metabolic variability among cells shape the dynamics of microbial communities. For this, we developed CROMICS, a spatio-temporal framework that combines techniques such as individual-based modeling, scaled particle theory, and thermodynamic flux analysis to explicitly incorporate the cell metabolism and the impact of the presence of macromolecular components on the nutrients diffusion. This framework was used to study two archetypical microbial communities (i) Escherichia coli and Salmonella enterica that cooperate with each other by exchanging metabolites, and (ii) two E. coli with different production level of extracellular polymeric substances (EPS) that compete for the same nutrients. In the mutualistic community, our results demonstrate that crowding enhanced the fitness of cooperative mutants by reducing the leakage of metabolites from the region where they are produced, avoiding the resource competition with non-cooperative cells. Moreover, we also show that E. coli EPS-secreting mutants won the competition against the non-secreting cells by creating less dense structures (i.e. increasing the spacing among the cells) that allow mutants to expand and reach regions closer to the nutrient supply point. A modest enhancement of the relative fitness of EPS-secreting cells over the non-secreting ones were found when the crowding effect was taken into account in the simulations. The emergence of cell-cell interactions and the intracellular conflicts arising from the trade-off between growth and the secretion of metabolites or EPS could provide a local competitive advantage to one species, either by supplying more cross-feeding metabolites or by creating a less dense neighborhood.


2021 ◽  
Author(s):  
Karthik Peddireddy ◽  
Davide Michieletto ◽  
Gina Aguirre ◽  
Jonathan Garamella ◽  
Pawan Khanal ◽  
...  

Abstract Polymer composites are ubiquitous in biology and industry alike, owing to their emergent desirable mechanical properties not attainable in single-species systems. At the same time, polymer topology has been shown to play a key role in tuning the rheology of polymeric fluids. However, how topology impacts the rheology of composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA). We couple linear and nonlinear optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites of linear DNA and microtubules exhibit a strongly non-monotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites of ring DNA and microtubules show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the increased ability of rings to mix with microtubules.


2020 ◽  
Vol 124 (7) ◽  
pp. 1207-1217
Author(s):  
C. Z. Qiao ◽  
S. L. Zhao ◽  
H. L. Liu ◽  
W. Dong

2018 ◽  
Vol 115 (43) ◽  
pp. 10965-10970 ◽  
Author(s):  
Alex J. Guseman ◽  
Gerardo M. Perez Goncalves ◽  
Shannon L. Speer ◽  
Gregory B. Young ◽  
Gary J. Pielak

Protein−protein interactions are usually studied in dilute buffered solutions with macromolecule concentrations of <10 g/L. In cells, however, the macromolecule concentration can exceed 300 g/L, resulting in nonspecific interactions between macromolecules. These interactions can be divided into hard-core steric repulsions and “soft” chemical interactions. Here, we test a hypothesis from scaled particle theory; the influence of hard-core repulsions on a protein dimer depends on its shape. We tested the idea using a side-by-side dumbbell-shaped dimer and a domain-swapped ellipsoidal dimer. Both dimers are variants of the B1 domain of protein G and differ by only three residues. The results from the relatively inert synthetic polymer crowding molecules, Ficoll and PEG, support the hypothesis, indicating that the domain-swapped dimer is stabilized by hard-core repulsions while the side-by-side dimer shows little to no stabilization. We also show that protein cosolutes, which interact primarily through nonspecific chemical interactions, have the same small effect on both dimers. Our results suggest that the shape of the protein dimer determines the influence of hard-core repulsions, providing cells with a mechanism for regulating protein−protein interactions.


2018 ◽  
Vol 149 (8) ◽  
pp. 084701 ◽  
Author(s):  
Seth C. Martin ◽  
Brian B. Laird ◽  
Roland Roth ◽  
Hendrik Hansen-Goos

Sign in / Sign up

Export Citation Format

Share Document