One- and two-point velocity distribution functions and velocity autocorrelation functions for various Reynolds numbers in decaying homogeneous isotropic turbulence

2007 ◽  
Vol 39 (1-3) ◽  
pp. 49-67 ◽  
Author(s):  
Iwao Hosokawa
2016 ◽  
Vol 799 ◽  
pp. 159-199 ◽  
Author(s):  
A. Briard ◽  
T. Gomez ◽  
C. Cambon

The present work aims at developing a spectral model for a passive scalar field and its associated scalar flux in homogeneous anisotropic turbulence. This is achieved using the paradigm of eddy-damped quasi-normal Markovian (EDQNM) closure extended to anisotropic flows. In order to assess the validity of this approach, the model is compared to several detailed direct numerical simulations (DNS) and experiments of shear-driven flows and isotropic turbulence with a mean scalar gradient at moderate Reynolds numbers. This anisotropic modelling is then used to investigate the passive scalar dynamics at very high Reynolds numbers. In the framework of homogeneous isotropic turbulence submitted to a mean scalar gradient, decay and growth exponents for the cospectrum and scalar energies are obtained analytically and assessed numerically thanks to EDQNM closure. With the additional presence of a mean shear, the scaling of the scalar flux and passive scalar spectra in the inertial range are investigated and confirm recent theoretical predictions. Finally, it is found that, in shear-driven flows, the small scales of the scalar second-order moments progressively return to isotropy when the Reynolds number increases.


2021 ◽  
Author(s):  
Maxime Dubart ◽  
Urs Ganse ◽  
Adnane Osmane ◽  
Andreas Johlander ◽  
Markus Battarbee ◽  
...  

<p>Numerical simulations are widely used in modern space physics and are an essential tool to understand or discover new phenomena which cannot be observed using spacecraft measurements. However, numerical simulations are limited by the space grid resolution of the system and the computational costs of having a high spatial resolution. Therefore, some physics may be unresolved in part of the system due to its low spatial resolution. We have previously identified, using Vlasiator, that the proton cyclotron instability is not resolved for grid cell sizes larger than four times the inertial length in the solar wind, for waves in the downstream of the quasi-perpendicular shock in the magnetosheath of a global hybrid-Vlasov simulation. This leads to unphysically high perpendicular temperature and a dominance of the mirror mode waves. In this study, we use high-resolution simulations to measure and quantify how the proton cyclotron instability diffuses and isotropizes the velocity distribution functions. We investigate the process of pitch-angle scattering during the development of the instability and propose a method for the sub-grid modelling of the diffusion process of the instability at low resolution. This allows us to model the isotropization of the velocity distribution functions and to reduce the temperature anisotropy in the plasma while saving computational resources.</p>


2000 ◽  
Vol 174 ◽  
pp. 412-422
Author(s):  
William C. Saslaw

AbstractCosmological many-body clustering agrees with the spatial and velocity distribution functions of galaxies at low redshifts, and it can be extended to high redshifts z ≈ 3 or more. The high redshift distribution functions are predicted to have a particular form. In the simplest case, there are no free parameters in this prediction, but the degree of clustering depends sensitively on Ω0. Current observations of small groups at high redshifts suggest that Ω0 = 0.3 ± 0.2 for Einstein-Friedmann cosmologies.


2019 ◽  
Vol 867 ◽  
pp. 877-905
Author(s):  
B. J. Devenish ◽  
D. J. Thomson

We present an extension of Thomson’s (J. Fluid Mech., vol. 210, 1990, pp. 113–153) two-particle Lagrangian stochastic model that is constructed to be consistent with the $4/5$ law of turbulence. The rate of separation in the new model is reduced relative to the original model with zero skewness in the Eulerian longitudinal relative velocity distribution and is close to recent measurements from direct numerical simulations of homogeneous isotropic turbulence. The rate of separation in the equivalent backwards dispersion model is approximately a factor of 2.9 larger than the forwards dispersion model, a result that is consistent with previous work.


Sign in / Sign up

Export Citation Format

Share Document