Europe solid oxide fuel cells market, competition forecast and opportunities report, 2013-2023 featuring LG Fuel Cell Systems, Fuel Cell Energy, SOLIDpower Group & Hexis AG

2019 ◽  
Vol 2019 (3) ◽  
pp. 2-3
RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.


Author(s):  
Z. F. Zhou ◽  
R. Kumar ◽  
S. T. Thakur ◽  
L. R. Rudnick ◽  
H. Schobert ◽  
...  

Solid oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 hours for the waste vegetable oil without dilution. The generated power was up to 0.25 W/cm2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.


Author(s):  
Zongping Shao ◽  
Jennifer Mederos ◽  
Chan Kwak ◽  
Sossina M. Haile

The compound Bi2V0.9Cu0.1O5.35, a typical Aurivillius-type fast oxygen ion conductor, was evaluated as a possible cathode material for single-chamber solid-oxide fuel cells operated under mixed propane and oxygen. The material was found to be structurally stable under various C3H8+O2 environments over a wide temperature range and furthermore displayed low catalytic activity for propane oxidation. However, at temperatures above 650°C, detrimental reactions between the cathode and the ceria electrolyte occurred, producing low conductivity interfacial phases. At these high temperatures the cathode additionally underwent extensive sintering and loss of porosity and, thus, stable fuel cell operation was limited to furnace temperatures of <600°C. Even under such conditions, however, the partial oxidation occurring at the anode (a ceria nickel cermet) resulted in cell temperatures as much as 70–110°C higher than the gas-phase temperature. This explains the sharp decrease in fuel cell performance with time during operation at a furnace temperature of 586°C. Under optimized conditions, a peak power density of ∼60 mW/cm2 was obtained, which does not compete with recent values obtained from higher activity cathodes. Thus, the poor electrochemical activity of Bi2V0.9Cu0.1O5.35, combined with its chemical instability at higher temperatures, discourages further consideration of this material as a cathode in single-chamber fuel cells.


2006 ◽  
Vol 972 ◽  
Author(s):  
Melanie Kuhn ◽  
Teko Napporn ◽  
Michel Meunier ◽  
Daniel Therriault ◽  
Srikar Vengallatore

AbstractMiniaturized single-chamber solid-oxide fuel cells (SC-SOFC) are a promising class of devices for portable power generation required in the operation of distributed networks of microelectromechanical systems (MEMS) in harsh environments. The single-face configuration, which consists of interdigitated (comb-like) array of electrodes on an yttria-stabilized zirconia (YSZ) electrolyte substrate, is of particular interest because of the ease of high-temperature microfluidic packaging and integration with MEMS. The primary design consideration for this configuration is the minimization of electrode widths and inter-electrode spacings to dimensions on the order of a few micrometers. This is necessary to minimize polarization resistance and increase fuel cell efficiency. Achieving these geometries using standard microfabrication methods is difficult because of the thickness, porosity, and complex chemistries of the electrodes. Here, we report the development of an innovative and rapid method for manufacturing SC-SOFCs with interdigitated electrodes using robot-controlled direct-writing. The main steps consist of: (i) formation of inks (or suspensions) using anode (NiO-YSZ) and cathode (lanthanum strontium manganite) powders, (ii) pressure-driven extrusion of inks through a micronozzle using a robot-controlled platform, and (iii) sequential sintering to form the fuel cell. The first-generation SC-SOFC device, with electrode widths of 130 μm and inter-electrode spacing of 300 μm, has been manufactured using direct-write microfabrication. The electrodes have been extensively characterized using electron microscopy and x-ray diffraction to assess porosity and to confirm phase identity. The primary process parameters in this approach are the particle size and size distribution, rheological properties of the suspension, extrusion pressure, nozzle size, stage velocity, and sintering conditions. As the first step in the development of detailed process-structure-performance correlations for the fuel cells, we have studied the effects of extrusion pressure (in the range 30-40 bar) and stage velocity (in the range 0.2-2.0 mm/s) on the geometry and size of electrodes, for fixed suspension viscosity and nozzle diameter. An optimal combination of speed and pressure has been identified and catalogued in the form of process maps. Similarly, the particle size distribution of the anode and cathode powders is found to have a significant effect on the microstructure, especially porosity, of the sintered electrodes. The implications of these results for the design of the next generation of SC-SOFC, with reduced electrode dimensions and improved electrochemical performance, will be discussed.


2020 ◽  
Vol 8 (48) ◽  
pp. 25978-25985
Author(s):  
Jun Li ◽  
Jie Hou ◽  
Xiuan Xi ◽  
Ying Lu ◽  
Mingming Li ◽  
...  

Symmetrical solid oxide fuel cell reactor with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ as electrolyte and La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ as electrodes is applied to cogenerate ethylene and electricity.


2014 ◽  
Vol 2 (42) ◽  
pp. 18106-18114 ◽  
Author(s):  
Elena Stefan ◽  
Paul A. Connor ◽  
Abul K. Azad ◽  
John T. S. Irvine

The paper investigates the structure and properties of novel electrode scaffold materials for solid oxide fuel cell (SOFC), such as MgMxCr2−xO4, (M = Li, Mg, Ti, Fe, Cu, Ga).


Sign in / Sign up

Export Citation Format

Share Document