Predicted long-term effects of group selection on species composition and stand structure in northern hardwood forests

2017 ◽  
Vol 400 ◽  
pp. 677-691 ◽  
Author(s):  
Corey R. Halpin ◽  
Craig G. Lorimer ◽  
Jacob J. Hanson ◽  
Brian J. Palik
2006 ◽  
Vol 36 (5) ◽  
pp. 1255-1265 ◽  
Author(s):  
John P Caspersen

In this paper, I examine tree mortality in northern hardwood forests subjected to single-tree felling. Mortality risk was estimated as a function of growth prior to harvest and time since harvest. This allowed me to separately quantify mortality due to (1) natural processes, (2) intentional felling, and (3) stress and (or) felling damage (postcut mortality). The long-term rate of mortality due to natural causes was 1.5% per year. The intentional felling of trees increased the average mortality to 3.1%, and postcut mortality of residual trees increased the average an additional 0.2%–3.3% (the latter reflects both the direct negative effects of harvesting and the indirect positive effect of releasing residual trees from suppression). Thus, from a population-level perspective, the increased mortality caused by stress and (or) felling damage to residual trees was small compared to that caused by both natural mortality and tree felling. However, the long-term population average obscures more dramatic (though transient) effects of felling on small trees (DBH <10 cm), for which mortality rates increased by as much as 5% immediately after felling. This increase is several times greater than the natural mortality rate for small trees and may therefore have a substantial impact on stand structure and community dynamics.


Author(s):  
Nicole Rogers ◽  
Anthony W. D'Amato ◽  
William Leak

: In northeastern North America, group selection is frequently used in northern hardwood forests to maintain uneven-aged stand structure and promote regeneration of tree species spanning a range of shade tolerances. For this study, long-term application of group selection at the Bartlett Experimental Forest, New Hampshire, USA provided a unique opportunity to address cohort and stand level progression after 80-years of treatment. Cohort-level evolution reflected successional and developmental dynamics associated with even-aged forest systems, whereas aggregate, stand-level conditions were consistent with expectations for uneven-aged systems. As cohorts aged, diameter distributions progressed towards descending monotonic forms and species composition transitioned from shade-intolerant species to shade-tolerant species. Standing deadwood and downed woody material in cohorts followed trajectories of aging even-aged stands through time. Although American beech (Fagus grandifolia Ehrh.) was a primary species across cohorts and at the stand level, stand level regeneration included a mixture of ecologically and commercially valuable species. These long-term results offer important insights into emergent cohort and stand-level conditions and processes that may affect continued recruitment of desirable compositional and structural conditions in stands managed using group selection over numerous cutting cycles.


2021 ◽  
Vol 479 ◽  
pp. 118541
Author(s):  
Catherine R. Henry ◽  
Michael B. Walters ◽  
Andrew O. Finley ◽  
Gary J. Roloff ◽  
Evan J. Farinosi

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 855 ◽  
Author(s):  
Knapp ◽  
Webster ◽  
Kern

Managing forests for mixtures of canopy species promotes future resilience and mitigates risks of catastrophic resource loss. This study describes the compositions, heights, and locations within openings of gap-capturing saplings in two long-term group-selection experiments in managed northern hardwoods. We expected opening size to affect the composition of gap-capturing saplings and that composition would match advance regeneration where relatively large stems remained following harvest. We also expected sapling height to respond positively to opening size, but plateau in gap areas above 200 m2, and legacy-tree retention to negatively affect sapling height. In two group-selection experiments, we found that the composition of gap-capturing saplings was not affected by opening size at 15 and 23 years post-harvest, respectively, and that composition matched advance regeneration only when larger stems (>2.5 cm breast height, dbh) were removed during harvest. Gap-capturing sapling composition did not match the surrounding canopy in either study site. Sapling height was positively correlated with gap area, but, as we expected, plateaued in larger openings. In openings without legacy-retention, gap area did not significantly predict sapling height in openings larger than 100–200 m2, whereas this threshold was between 300–400 m2 in openings with single legacy-tree retention. Sapling height was negatively associated with distance into openings when legacy-trees were present. Group selection appears to recruit modestly higher proportions of shade-midtolerant and intolerant species to the canopy compared to adjacent unmanaged second-growth or managed, uneven-aged northern hardwoods.


2001 ◽  
Vol 152 (1-3) ◽  
pp. 235-258 ◽  
Author(s):  
Jungkee Choi ◽  
Craig G Lorimer ◽  
Jayne Vanderwerker ◽  
William G Cole ◽  
George L Martin

2020 ◽  
Author(s):  
Alexander C Helman ◽  
Matthew C Kelly ◽  
Mark D Rouleau ◽  
Yvette L Dickinson

Abstract Managing northern hardwood forests using high-frequency, low-intensity regimes, such as single-tree selection, favors shade-tolerant species and can reduce tree species diversity. Management decisions among family forest owners (FFO) can collectively affect species and structural diversity within northern hardwood forests at regional scales. We surveyed FFOs in the Western Upper Peninsula of Michigan to understand likely future use of three silvicultural treatments—single-tree selection, shelterwood, and clearcut. Our results indicate that FFOs were most likely to implement single-tree selection and least likely to implement clearcut within the next 10 years. According to logistic regression, prior use of a treatment and perceived financial benefits significantly increased the odds for likely use for all three treatments. Having received professional forestry assistance increased likely use of single-tree selection but decreased likely use of shelterwood. We discuss these results within the context of species diversity among northern hardwood forests throughout the region.


Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 541-554
Author(s):  
Adam Gorgolewski ◽  
Philip Rudz ◽  
Trevor Jones ◽  
Nathan Basiliko ◽  
John Caspersen

Ecology ◽  
1964 ◽  
Vol 45 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Edward Flaccus ◽  
Lewis F. Ohmann

Sign in / Sign up

Export Citation Format

Share Document