single tree selection
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Maeve C Draper ◽  
Robert E Froese

Abstract The Cutting Methods Study at the Ford Forest in the Upper Peninsula of Michigan, USA, was established in 1956 and has been maintained continuously on a 10 year cycle. Methods consist of three diameter limits (DL; 13, 30, and 41 cm), single-tree selection to three residual basal area limits (STS; 11, 16, and 21 m2ha−1), and light improvement (LI) focused on improving tree grade. Long-term results show that the 41 cm DL produced the greatest managed forest value and cumulative sawlog production, followed by the STS to 11 m2ha−1 residual basal area. STS treatments and LI were uniformly superior at improving standing tree grade. In contrast, treatments that emphasize removal of large diameter trees while retaining moderate residual basal area (the 41 cm DL and 11 m2ha−1 STS) produced the largest harvest volumes of high-grade sawlogs, driving financial performance. Stand density has declined in all treatments except the 30 and 41 cm DL, where it has increased, and these two treatments have larger abundance of saplings and poles. Alternative partial cutting methods such as selection to lower residual basal areas and medium-intensity diameter-limit cuts thus may provide greater financial returns and higher average quality, and could have implications on regeneration and long-term sustainability. Study Implications: Long-term comparison of alternative partial cutting practices in northern hardwoods in the Upper Peninsula of Michigan over 60 years reveals that Arbogast-based single-tree selection is inferior using financial and volume yield criteria. Alternatives that remove more of the larger trees appear over time to increase regeneration and harvested tree quality, which in turn drives financial performance. However, treatments with extremely high volume removals perform poorly against all others, and have few, if any, redeeming financial, silvicultural, or ecological qualities.


2021 ◽  
Author(s):  
Romain Jaeger ◽  
Sylvain Delagrange ◽  
Isabelle Aubin ◽  
Gilles Joanisse ◽  
Patricia Raymond ◽  
...  

Abstract Background: Short-term effects of silvicultural treatments on soil properties and understory vegetation in temperate hardwood forests are well documented, but few studies have examined longer term effects of treatment intensity. We hypothesized that short-term effects of silvicultural treatments on understory plant diversity do persist over the medium-term (20 years after treatment); the magnitude of these effects would be proportional to the intensity of canopy and soil disturbance.Methods: Soil properties (pH, total C and N, extractable P, exchangeable bases) and understory community diversity indices were measured in six experimental sites along a longitudinal gradient that covered different climatic and edaphic conditions in the yellow birch-sugar maple bioclimate domain. Reference condition, i.e. control forest with no anthropogenic disturbance for at least 80 years (CON) were compared to twenty years old regeneration treaments representing a gradient of canopy and soil disturbance intensity: single-tree selection cuts (SIN); group-selection cuts (GRP); and group-selection cuts with scarification (GRPS). Results: Geographic location of sites explained more variation in soil properties and community composition than did treatments. Species richness in both group-selection treatments was higher than that in CON forests. However, understory plant equitability and beta diversity among sites in GRP and GRPS were lower than in SIN and CON forests. More intense treatments (GRP and GRPS) increased the relative occurrence of vegetatively reproducing heliophilic plants, a trait syndrome associated with adaptations to disturbed environments. These treatments also contributed to the medium-term persistence of recalcitrant competitor species (e.g., Rubus idaeus, Prunus pensylvanica) whereas soil scarification appears to have negative sustained effects on species known to be sensitive to regeneration treatments (e.g. Monotropa uniflora, Dryopteris spinulosa).Conclusion: Of the treatments studied, single-tree selection cutting appears to be the most appropriate silvicultural treatment for maintaining soil functions and heterogeneous understory plant communities with compositions and structures similar to natural forests, while more intense treatments rather maintain and expand species that are better adapted to a wider range of environmental conditions, including open environments.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 55
Author(s):  
Farzam Tavankar ◽  
Francesco Latterini ◽  
Mehrdad Nikooy ◽  
Rachele Venanzi ◽  
Ramin Naghdi ◽  
...  

In this study the influence of forest management on the characteristics of snags and tree cavities in the Hyrcanian forests of Iran was investigated. In particular, the effect of two sylvicultural treatments (shelter wood and single-tree selection) was assessed in comparison to protected stands. The abundance, diameter, height, and degree of decay of snag species, and the characteristics of birds excavated and natural cavities (number and height from the ground level) were measured by systematic plots in each stand. The results showed that the abundance, species diversity, and size of snags in both of the sylvicultural treatments were significantly lower than the protected stands. The number of birds excavated and natural cavities on thicker snags with moderate decay was significantly higher than other decay classes. Abundance, species diversity, size of snags, and number of tree cavities in the single-tree selection stands were significantly higher than sheltered-wood stands.


2021 ◽  
Vol 12 (1) ◽  
pp. 34-40
Author(s):  
O. V. Tokarieva

In this paper, we present the basic features of final felling in Ukraine. Prevailing timber harvest methods and their areas were considered. For analyzing the volumes of modern forest exploitation were data from permits for final felling on actual cuttings in of all forestry enterprises of Ukraine. Studies were conducted for the period 2019-2020. It was installed that clearcutting is the main timber harvest method (95 % in Kyiv region, 45 % in Lviv region). Among other methods, the leading place is shelterwood. During the study period, only two (uniform and strip) and three (group) reception of shelterwood were recorded. The areas of stands designed for shelterwood final felling are significantly lower than those defined by the rules. The use of the single tree selection method is more related to deciduous plantations, which indirectly indicates the predominance of deciduous stands of uneven-aged stands in Ukraine. Shelterwood and single tree selection removes methods are applied in Chernihiv, Chernivtsi, Ivano-Frankivsk, Kyiv, Lviv, Zakarpattia, Zhytomyr regions. A characteristic feature is the predominance of coniferous areas stands during clearcutting. Area of deciduous stands are larger compared to coniferous during shelterwood. Combined method is the less popular in Ukraine. It has been carried out at 9,4 hectares for two years. Average logging areas range from 1-2 hectares for clearcutting, 1-5 hectares for shelterwood and 2-8 hectares for combined method. Designed logging areas are significantly lower than those introduced by Ukrainian legislation. The implementation of the principles of close-to-nature forestry can be provided by reduction in the volume of clearcutting. Increasing of shelterwood and single tree selection methods, which are close-to-nature, will ensure the cultivation of mixed uneven-aged forest stands of high vigor, productivity and biological stability. Studies reflect regional and species features and benefits of timber harvest methods in the forests of Ukraine.


Author(s):  
Eric K. Zenner ◽  
JeriLynn E. Peck

Structural variability in natural Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) forests hinders restoration targets for the full old-growth developmental sequence. To guide stage-specific restoration, we present a new approach toward developing a simple index of the vertical diversification (VD) stage. VD-associated sub-stand structures were objectively identified by quantifying the size structures of live trees across a developmental sequence of 10 pristine stands in the Oregon Cascades, USA. Floating neighborhoods were used to delineate natural tree neighborhoods based on triangulated irregular networks in five concentric rings of ever-greater spatial extent (averaging 60–2060 m2). Diameter distributions summarized the most frequently encountered tree size structures among neighborhoods, with increasing deviation from the neutral multi-variate core. Of 18 observed diameter distribution types (DDTs), the core DDT characterized all-sized tree neighborhoods reflective of vertical diversification, which was most abundant in early old-growth (VD) stands and least abundant at the extremes of the sequence. VD declined in older stands, whose more distinct DDTs had peaks in larger trees and multiple size classes, likely reflecting horizontal diversification (HD). This new approach illustrates that structural restoration of VD stands could be facilitated by the single-tree selection method, while that of HD stands may be promoted with both single-tree and group selection as well as targeted release.


2021 ◽  
Vol 67 (No. 3) ◽  
pp. 101-112
Author(s):  
Javed Iqbal

Site conditions (topography, aspect, moisture availability, humus thickness, light exposure, and grazing activities) play a vital role in the germination and regeneration process. The research was conducted in the Himalayan moist temperate forest. The research site was divided based on the silvicultural system (group selection system and single-tree selection system) into 148 plots and 150 plots, respectively. The group selection system was examined on the site of 2 ha which was clear-felled under a project in the 1980's. The present study examined the impact of silvicultural systems on regeneration. The frequency table was used, and relative frequency was calculated for the species and silvicultural system, density per m2 was also calculated. Diversity indices were calculated through taxa, dominance, Simpson’s index, Shannon index, evenness, equitability, and fisher alpha. Ten taxa were found in both silvicultural systems, with individual repetition of 17 and 15 taxa, respectively. Group selection is more compact visibly as compared to the single-tree selection system. The single-tree selection system is more diversified in species composition, stand structure, moisture availability, and less humus availability. The study also highlights future predictions for the conservation of these forests, which are highly sensitive and a hotspot for wildlife and climate change phenomena. Silvicultural practices such as silvicultural system, cleaning, weeding, thinning operations are regularly practiced, which can reduce the negative impact on these productive forests.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 137
Author(s):  
Alireza Amoli Kondori ◽  
Kambiz Abrari Vajari ◽  
Mohammad Feizian ◽  
Antonio Montagnoli ◽  
Antonino Di Iorio

Research Highlights: Fine roots play an important role in plant growth as well as in carbon (C) and nutrient cycling in terrestrial ecosystems. Gaining a wider knowledge of their dynamics under forest gap opening would improve our understanding of soil carbon input and below-ground carbon stock accumulation. Single-tree selection is increasingly recognized as an alternative regime of selection cutting sustaining biodiversity and carbon stock, along with timber production, among ecosystem functions. However, the fine root response in terms of morphological and chemical composition to the resulting harvest-created gaps remains unclear. Background and Objectives: This paper investigates the effect in the medium term (i.e., 6 years after logging) of differently sized harvest-created gaps on fine root dynamics and chemical composition. Materials and Methods: A total of 15 differently sized gaps (86.05–350.7 m2) and the adjacent 20 m distant closed canopies (control) were selected in a temperate Fagus orientalis forest (Hyrcanian region, Iran). Eight soil cores were collected at the cardinal points of the gap edge, including four facing the gap area—the same at the adjacent intact forest. Results: For the selected edge trees, the different size of gaps, the core position, and the tree orientation did not affect the investigated morphological traits, except for the slightly higher specific root length (SRL) for the larger fine root fraction (1–2 mm) in the side facing the gap area. Differently, the investigated chemical traits such as N concentration and cellulose:lignin ratio significantly increased with increasing gap size, the opposite for C:N ratio and lignin. Moreover, N concentration and C:N significantly decreased and increased with the fine root diameter, respectively. Conclusions: This work highlighted that, in the medium term and within the adopted size range, artificial gap opening derived from single-tree selection practice affected the chemistry rather than the biomass and morphology of gap-facing fine roots of edge trees. The medium term of six years after gap creation might have been long enough for the recovery of the fine root standing biomass to the pre-harvest condition, particularly near the stem of edge trees. A clear size threshold did not come out; nevertheless, 300 m2 may be considered a possible cut-off determining a marked change in the responses of fine roots.


2020 ◽  
Author(s):  
Alexander C Helman ◽  
Matthew C Kelly ◽  
Mark D Rouleau ◽  
Yvette L Dickinson

Abstract Managing northern hardwood forests using high-frequency, low-intensity regimes, such as single-tree selection, favors shade-tolerant species and can reduce tree species diversity. Management decisions among family forest owners (FFO) can collectively affect species and structural diversity within northern hardwood forests at regional scales. We surveyed FFOs in the Western Upper Peninsula of Michigan to understand likely future use of three silvicultural treatments—single-tree selection, shelterwood, and clearcut. Our results indicate that FFOs were most likely to implement single-tree selection and least likely to implement clearcut within the next 10 years. According to logistic regression, prior use of a treatment and perceived financial benefits significantly increased the odds for likely use for all three treatments. Having received professional forestry assistance increased likely use of single-tree selection but decreased likely use of shelterwood. We discuss these results within the context of species diversity among northern hardwood forests throughout the region.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1338
Author(s):  
Simone Bianchi ◽  
Mari Myllymaki ◽  
Jouni Siipilehto ◽  
Hannu Salminen ◽  
Jari Hynynen ◽  
...  

Background and Objectives: Continuous cover forestry is of increasing importance, but operational forest growth models are still lacking. The debate is especially open if more complex spatial approaches would provide a worthwhile increase in accuracy. Our objective was to compare a nonspatial versus a spatial approach for individual Norway spruce tree growth models under single-tree selection cutting. Materials and Methods: We calibrated nonlinear mixed models using data from a long-term experiment in Finland (20 stands with 3538 individual trees for 10,238 growth measurements). We compared the use of nonspatial versus spatial predictors to describe the competitive pressure and its release after cutting. The models were compared in terms of Akaike Information Criteria (AIC), root mean square error (RMSE), and mean absolute bias (MAB), both with the training data and after cross-validation with a leave-one-out method at stand level. Results: Even though the spatial model had a lower AIC than the nonspatial model, RMSE and MAB of the two models were similar. Both models tended to underpredict growth for the highest observed values when the tree-level random effects were not used. After cross-validation, the aggregated predictions at stand level well represented the observations in both models. For most of the predictors, the use of values based on trees’ height rather than trees’ diameter improved the fit. After single-tree selection cutting, trees had a growth boost both in the first and second five-year period after cutting, however, with different predicted intensity in the two models. Conclusions: Under the research framework here considered, the spatial modeling approach was not more accurate than the nonspatial one. Regarding the single-tree selection cutting, an intervention regime spaced no more than 15 years apart seems necessary to sustain the individual tree growth. However, the model’s fixed effect parts were not able to capture the high growth of the few fastest-growing trees, and a proper estimation of site potential is needed for uneven-aged stands.


Sign in / Sign up

Export Citation Format

Share Document