Combining remote sensing and field data to assess recovery of the Chilean Mediterranean vegetation after fire: Effect of time elapsed and burn severity

2022 ◽  
Vol 503 ◽  
pp. 119800
Author(s):  
Cecilia Smith-Ramírez ◽  
Jessica Castillo-Mandujano ◽  
Pablo Becerra ◽  
Nicole Sandoval ◽  
Rodrigo Fuentes ◽  
...  
Author(s):  
Karina Dias-Silva ◽  
Thiago Bernardi Vieira ◽  
Talissa Pio de Matos ◽  
Leandro Juen ◽  
Juliana Simião-Ferreira ◽  
...  

2019 ◽  
Author(s):  
◽  
Anh Thi Tuan Nguyen

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Economic as well as water shortage pressure on agricultural use of water has placed added emphasis on efficient irrigation management. Center pivot technology has made great improvement with variable rate irrigation (VRI) technology to vary water application spatially and temporally to maximize the economic and environmental return. Proper management of VRI systems depends on correctly matching the pivot application to specific field temporal and areal conditions. There is need for a tool to accurately and inexpensively define dynamic management zones, to sense within-field variability in real time, and control variable rate water application so that producers are more willing to adopt and utilize the advantages of VRI systems. This study included tests of the center pivot system uniformity performance in 2014 at Delta Research Center in Portageville, MO. The goal of this research was to develop MOPivot software with an algorithm to determine unique management areas under center pivot systems based on system design and limitations. The MOPivot tool automates prescriptions for VRI center pivot based on non-uniform water needs while avoiding potential runoff and deep percolation. The software was validated for use in real-time irrigation management in 2018 for VRI control system of a Valley 8000 center pivot planted to corn. The water balance model was used to manage irrigation scheduling. Field data, together with soil moisture sensor measurement of soil water content, were used to develop the regression model of remote sensing-based crop coefficient (Kc). Remote sensing vegetation index in conjunction with GDD and crop growth stages in regression models showed high correlation with Kc. Validation of those regression models was done using Centralia, MO, field data in 2016. The MOPivot successfully created prescriptions to match system capacity of the management zone based on system limitations for center pivot management. Along with GIS data sources, MOPivot effectively provides readily available graphical prescription maps, which can be edited and directly uploaded to a center pivot control panel. The modeled Kc compared well with FAO Kc. By combining GDD and crop growth in the models, these models would account for local weather conditions and stage of crop during growing season as time index in estimating Kc. These models with Fraction of growth (FrG) and cumulative growing degree days (cGDD) had a higher coefficient of efficiency, higher Nash-Sutcliffe coefficient of efficiency and higher Willmott index of agreement. Future work should include improvement in the MOPivot software with different crops and aerial remote sensing imagery to generate dynamic prescriptions during the season to support irrigation scheduling for real-time monitoring of field conditions.


Agromet ◽  
2010 ◽  
Vol 24 (1) ◽  
pp. 33
Author(s):  
Naimatu Solicha ◽  
Tania June ◽  
M. Ardiansyah ◽  
Antonius B. W.

Forests play an important role in global carbon cycling, since they hold a large pool of carbon as well as potential carbon sinks and sources to the atmosphere. Accurate estimation of forest biomass is required for greenhouse gas inventories and terrestrial carbon accounting. The information on biomass is essential to assess the total and the annual capacity of forest vigor. Estimation of aboveground biomass is necessary for studying productivity, carbon cycles, nutrient allocation, and fuel accumulation in terrestrial ecosystem. The possibility that above ground forest biomass might be determined from space is a promising alternative to ground-based methods. Remote sensing has opened an effective way to estimate forest biomass and carbon. By the combination of data field measurement and allometric equation, the above ground trees biomass possible to be estimated over the large area. The objectives of this research are: (1) To estimate the above ground tree biomass and carbon stock of forest cover in Lore Lindu National Park by combination of field data observation, allometric equation and multispectral satellite image; (2) to find the equation model between parameter that determines the biomass estimation. The analysis showed that field data observation and satellite image classification influencing much on the accuracy of trees biomass and carbon stock estimation. The forest cover type A and B (natural forest with the minor timber extraction) has the higher biomass than C and D (natural forest with the major timber extraction and agro forestry), it is about 607 ton/ha and 603 ton/ha. Forest cover type C is 457 ton/ha. Forest cover type D has the lowest biomass is about 203 ton/ha. Natural forest has high biomass, because of the tropical vegetation trees heterogeneity. Forest cover D has the lowest trees biomass because its vegetation component as secondary forest with the homogeneity of cacao plantation. The forest biomass and carbon estimation for each cover type will be useful for the further equation analysis when using the remote sensing technology for estimating the total biomass and for the economic carbon analysis.Forests play an important role in global carbon cycling, since they hold a large pool of carbon as well as potential carbon sinks and sources to the atmosphere. Accurate estimation of forest biomass is required for greenhouse gas inventories and terrestrial carbon accounting. The information on biomass is essential to assess the total and the annual capacity of forest vigor. Estimation of aboveground biomass is necessary for studying productivity, carbon cycles, nutrient allocation, and fuel accumulation in terrestrial ecosystem. The possibility that above ground forest biomass might be determined from space is a promising alternative to ground-based methods. Remote sensing has opened an effective way to estimate forest biomass and carbon. By the combination of data field measurement and allometric equation, the above ground trees biomass possible to be estimated over the large area. The objectives of this research are: (1) To estimate the above ground tree biomass and carbon stock of forest cover in Lore Lindu National Park by combination of field data observation, allometric equation and multispectral satellite image; (2) to find the equation model between parameter that determines the biomass estimation. The analysis showed that field data observation and satellite image classification influencing much on the accuracy of trees biomass and carbon stock estimation. The forest cover type A and B (natural forest with the minor timber extraction) has the higher biomass than C and D (natural forest with the major timber extraction and agro forestry), it is about 607 ton/ha and 603 ton/ha. Forest cover type C is 457 ton/ha. Forest cover type D has the lowest biomass is about 203 ton/ha. Natural forest has high biomass, because of the tropical vegetation trees heterogeneity. Forest cover D has the lowest trees biomass because its vegetation component as secondary forest with the homogeneity of cacao plantation. The forest biomass and carbon estimation for each cover type will be useful for the further equation analysis when using the remote sensing technology for estimating the total biomass and for the economic carbon analysis.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Hussein A. El‐Naggar ◽  
El‐Sayed S. Salem ◽  
Sameh B. El‐Kafrawy ◽  
Mansour A. Bashar ◽  
Walaa M. Shaban ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 494 ◽  
Author(s):  
Elena Marcos ◽  
Víctor Fernández-García ◽  
Alfonso Fernández-Manso ◽  
Carmen Quintano ◽  
Luz Valbuena ◽  
...  

We analysed the relationship between burn severity indicators, from remote sensing and field observations, and soil properties after a wildfire in a fire-prone Mediterranean ecosystem. Our study area was a large wildfire in a Pinus pinaster forest. Burn severity from remote sensing was identified by studying immediate post-fire Land Surface Temperature (LST). We also evaluated burn severity in the field applying the Composite Burn Index (CBI) in a total of 84 plots (30 m diameter). In each plot we evaluated litter consumption, ash colour and char depth as visual indicators. We collected soil samples and pH, soil organic carbon, dry aggregate size distribution (MWD), aggregate stability and water repellency were analysed. A controlled heating of soil was also carried out in the laboratory, with soil from the control plots, to compare with the changes produced in soils affected by different severity levels in the field. Our results shown that changes in soil properties affected by wildfire were only observed in soil aggregation in the high severity situation. The laboratory-controlled heating showed that temperatures of about 300 °C result in a significant reduction in soil organic carbon and MWD. Furthermore, soil organic carbon showed a significant decrease when LST values increased. Char depth was the best visual indicator to show changes in soil properties (mainly physical properties) in large fires that occur in Mediterranean pine forests. We conclude that CBI and post-fire LST can be considered good indicators of soil burn severity since both indicate the impact of fire on soil properties.


Sign in / Sign up

Export Citation Format

Share Document