scholarly journals Simvastatin prevents IL-1β potentiation of bradykinin-induced microvascular permeability in intact skeletal muscle: involvement of NADPH oxidase and reactive oxygen species

2021 ◽  
Vol 165 ◽  
pp. 46
Author(s):  
Felipe Freitas ◽  
Paul A. Fraser ◽  
Giovanni E. Mann
2006 ◽  
Vol 38 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Rachel Navet ◽  
Ange Mouithys-Mickalad ◽  
Pierre Douette ◽  
Claudine M. Sluse-Goffart ◽  
Wieslawa Jarmuszkiewicz ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shan Chen ◽  
Xian-Fang Meng ◽  
Chun Zhang

Proteinuria is an independent risk factor for end-stage renal disease (ESRD) (Shankland, 2006). Recent studies highlighted the mechanisms of podocyte injury and implications for potential treatment strategies in proteinuric kidney diseases (Zhang et al., 2012). Reactive oxygen species (ROS) are cellular signals which are closely associated with the development and progression of glomerular sclerosis. NADPH oxidase is a district enzymatic source of cellular ROS production and prominently expressed in podocytes (Zhang et al., 2010). In the last decade, it has become evident that NADPH oxidase-derived ROS overproduction is a key trigger of podocyte injury, such as renin-angiotensin-aldosterone system activation (Whaley-Connell et al., 2006), epithelial-to-mesenchymal transition (Zhang et al., 2011), and inflammatory priming (Abais et al., 2013). This review focuses on the mechanism of NADPH oxidase-mediated ROS in podocyte injury under different pathophysiological conditions. In addition, we also reviewed the therapeutic perspectives of NADPH oxidase in kidney diseases related to podocyte injury.


2009 ◽  
Vol 587 (13) ◽  
pp. 3363-3373 ◽  
Author(s):  
Melissa A. Chambers ◽  
Jennifer S. Moylan ◽  
Jeffrey D. Smith ◽  
Laurie J. Goodyear ◽  
Michael B. Reid

2005 ◽  
Vol 289 (1) ◽  
pp. C207-C216 ◽  
Author(s):  
Li Zuo ◽  
Thomas L. Clanton

Many tissues produce reactive oxygen species (ROS) during reoxygenation after hypoxia or ischemia; however, whether ROS are formed during hypoxia is controversial. We tested the hypothesis that ROS are generated in skeletal muscle during exposure to acute hypoxia before reoxygenation. Isolated rat diaphragm strips were loaded with dihydrofluorescein-DA (Hfluor-DA), a probe that is oxidized to fluorescein (Fluor) by intracellular ROS. Changes in fluorescence due to Fluor, NADH, and FAD were measured using a tissue fluorometer. The system had a detection limit of 1 μM H2O2 applied to the muscle superfusate. When the superfusion buffer was changed rapidly from 95% O2 to 0%, 5%, 21%, or 40% O2, transient elevations in Fluor were observed that were proportional to the rise in NADH fluorescence and inversely proportional to the level of O2 exposure. This signal could be inhibited completely with 40 μM ebselen, a glutathione peroxidase mimic. After brief hypoxia exposure (10 min) or exposure to brief periods of H2O2, the fluorescence signal returned to baseline. Furthermore, tissues loaded with the oxidized form of the probe (Fluor-DA) showed a similar pattern of response that could be inhibited with ebselen. These results suggest that Fluor exists in a partially reversible redox state within the tissue. When Hfluor-loaded tissues were contracted with low-frequency twitches, Fluor emission and NADH emission were significantly elevated in a way that resembled the hypoxia-induced signal. We conclude that in the transition to low intracellular Po2, a burst of intracellular ROS is formed that may have functional implications regarding skeletal muscle O2-sensing systems and responses to acute metabolic stress.


Sign in / Sign up

Export Citation Format

Share Document