A novel connectivity-based hierarchical model for multi-scale fracture system in carbonate reservoir simulation

Fuel ◽  
2019 ◽  
Vol 250 ◽  
pp. 327-338
Author(s):  
Ye Guo ◽  
Yu Liang ◽  
Junchao Li ◽  
Bin Gong
2008 ◽  
Author(s):  
Danila Gulyaev ◽  
Andrey Ivanovich Ipatov ◽  
Nataliya Chernoglazova ◽  
Maxim Fedoseev

2016 ◽  
Vol 32 (8) ◽  
pp. 1709-1720 ◽  
Author(s):  
J. A. Salo ◽  
D. M. Theobald

2009 ◽  
Vol 12 (01) ◽  
pp. 96-103 ◽  
Author(s):  
Saud M. Al-Fattah ◽  
Hamad A. Al-Naim

Summary Determination of relative permeability data is required for almost all calculations of fluid flow in petroleum reservoirs. Water/oil relative permeability data play important roles in characterizing the simultaneous two-phase flow in porous rocks and predicting the performance of immiscible displacement processes in oil reservoirs. They are used, among other applications, for determining fluid distributions and residual saturations, predicting future reservoir performance, and estimating ultimate recovery. Undoubtedly, these data are considered probably the most valuable information required in reservoir simulation studies. Estimates of relative permeability are generally obtained from laboratory experiments with reservoir core samples. In the absence of the laboratory measurement of relative permeability data, developing empirical correlations for obtaining accurate estimates of relative permeability data showed limited success, and proved difficult, especially for carbonate reservoir rocks. Artificial-neural-network (ANN) technology has proved successful and useful in solving complex structured and nonlinear problems. This paper presents a new modeling technology to predict accurately water/oil relative permeability using ANN. The ANN models of relative permeability were developed using experimental data from waterflood-core-tests samples collected from carbonate reservoirs of giant Saudi Arabian oil fields. Three groups of data sets were used for training, verification, and testing the ANN models. Analysis of results of the testing data set show excellent agreement with the experimental data of relative permeability. In addition, error analyses show that the ANN models developed in this study outperform all published correlations. The benefits of this work include meeting the increased demand for conducting special core analysis (SCAL), optimizing the number of laboratory measurements, integrating into reservoir simulation and reservoir management studies, and providing significant cost savings on extensive lab work and substantial required time.


Sign in / Sign up

Export Citation Format

Share Document