Combined micro-proppant and supercritical carbon dioxide (SC-CO2) fracturing in shale gas reservoirs: A review

Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121431
Author(s):  
C.P. Zhang ◽  
S. Liu ◽  
Z.Y. Ma ◽  
P.G. Ranjith
SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 691-703 ◽  
Author(s):  
Qing-You Liu ◽  
Lei Tao ◽  
Hai-Yan Zhu ◽  
Zheng-Dong Lei ◽  
Shu Jiang ◽  
...  

Summary Waterless fracturing for shale-gas exploitation using supercritical carbon dioxide (scCO2) is both effective and environmentally friendly, and has become an extensive research topic. Previous researchers have focused on the chemical and physical properties and microstructure of sandstone, carbonate, and shale caprock, rather than on the properties of shale-gas formations. The macroscale mechanical properties and microscale fracture characteristics of Wufeng Shale exposed to scCO2 (at greater than 31.8°C and 7.29 MPa) are still not well-understood. To study the macroscale and microscale changes of shale subjected to scCO2, we obtained Chinese Wufeng Shale crops (Upper Ordovician Formation) from Yibin, Sichuan Basin, China. The shale samples were divided into two groups. The first group was exposed to scCO2, and the second group was exposed to nitrogen (N2). Scanning-electron-microscope (SEM) and X-ray-diffraction (XRD) images were taken to study the original microstructure and mineral content of the shale. To study the macroscale mechanical changes of Wufeng Shale immersed in scCO2 or N2 for 10 hours, triaxial tests with controlled coring angles were conducted. SEM and XRD images were taken after the triaxial tests. In the SEM images, tight bedding planes and undamaged minerals (with sharp edges and smooth surfaces) were found in N2-treated samples both before and after testing, indicating that exposure to N2 did not affect the microstructures. However, the SEM images for the microstructure scCO2-treated samples before and after testing were quite different. The bedding planes were damaged, which left some connected microfractures and corrosion holes, and some mineral types were broken into small particles and left with uneven mineral surfaces. This shows that scCO2 can change rock microstructures and make some minerals (e.g., calcite) fracture more easily. The complex microscale fractures and the decrease in strength for scCO2-treated shale aid the seepage and gathering of gas, enhancing shale-gas recovery. Knowledge of the multiscale physical and chemical changes of shale exposed to scCO2 is not only essential for scCO2 fracturing, but it is also important for scCO2 jets used to break rock and for the geological storage of CO2.


Author(s):  
Qiao Lyu ◽  
Jingqiang Tan ◽  
Lei Li ◽  
Yiwen Ju ◽  
Andreas Busch ◽  
...  

The development of hydraulic fracturing and horizontal drilling techniques has promoted the exploitation of shale gas resources. However, using water has several potential drawbacks including environmental issues, e.g., the contamination...


2012 ◽  
Vol 524-527 ◽  
pp. 1355-1358 ◽  
Author(s):  
Yu Kun Du ◽  
Rui He Wang ◽  
Hong Jian Ni ◽  
Hong Jun Huo

The technical problems during the development of unconventional oil and gas reservoirs are becoming more and more difficult to handle with conventional drilling and production methods. Supercritical carbon dioxide has so many good properties such as high rock-breaking drilling efficiency, strong dissolved displacement performance and unharmful effect on the reservoir that it can be used as a drilling, completion and production medium to effectively exploit the unconventional oil and gas reservoirs. The global distribution of unconventional oil and gas resources is introduced, application status of carbon dioxide in oil and gas development is discussed, and development prospects of supercritical carbon dioxide in the unconventional oil and gas reservoirs are systematically analyzed. Using supercritical carbon dioxide as a medium in the whole development process is an important trend of unconventional oil and gas development technologies.


2021 ◽  
Vol 30 (4) ◽  
pp. 1444-1451
Author(s):  
Weiqiang Song ◽  
Hongjian Ni ◽  
Peng Tang ◽  
Shichuan Zhang ◽  
Jichao Gao ◽  
...  

Fuel ◽  
2018 ◽  
Vol 211 ◽  
pp. 60-66 ◽  
Author(s):  
Caili Dai ◽  
Tao Wang ◽  
Mingwei Zhao ◽  
Xin Sun ◽  
Mingwei Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document