scholarly journals The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs

Author(s):  
Qiao Lyu ◽  
Jingqiang Tan ◽  
Lei Li ◽  
Yiwen Ju ◽  
Andreas Busch ◽  
...  

The development of hydraulic fracturing and horizontal drilling techniques has promoted the exploitation of shale gas resources. However, using water has several potential drawbacks including environmental issues, e.g., the contamination...

SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2026-2040 ◽  
Author(s):  
Xiaojiang Li ◽  
Gensheng Li ◽  
Wei Yu ◽  
Haizhu Wang ◽  
Kamy Sepehrnoori ◽  
...  

Summary Liquid/supercritical carbon dioxide (L/SC-CO2) fracturing is an emerging technology for shale gas development because it can effectively overcome problems related to clay swelling and water scarcity. Recent applications show that L/SC-CO2 fracturing can induce variations in temperature. Understanding of this phenomenon is rudimentary and needs to be carefully addressed to improve the understanding of CO2 thermodynamic behavior, and thus helps to optimize CO2 fracturing in the field. In this paper, we develop a numerical model to assess the impact of thermal effect on fracture initiation during CO2 fracturing. The model couples fluid flow and heat transfer in the fracture, and is verified by a peer-reviewed solution and observation in laboratory experiments. The velocity, pressure, and temperature are calculated at various time to demonstrate the thermodynamic behavior during fracture initiation. A pseudo shock wave is observed, associated with a compression wave and an expansion wave, which finally leads to an increase in temperature in the new fracture and a decrease in temperature in the initial fracture. The thermal stress is derived to investigate the difference between hydraulic fracturing and CO2 fracturing. The results show that thermal stress, resulting from CO2 fracturing initiation, is comparable to the rock strength, which will help induce microfractures, and thus promote the fracture complexity. The formation pressure after CO2 fracturing is also calculated to evaluate the pressure-buildup potential. This work highlights the importance of CO2 expansion during and after fracturing. It is one of the unique features that differs from hydraulic fracturing. For field-design recommendations, to enhance the thermal effect of CO2 fracturing, it is a good strategy to pump CO2 at high pressure and low temperature into the reservoirs with high Young's modulus, low Poisson's ratio, low permeability, and high geothermal temperature (or large depth). This paper does not address the dynamics of fracture propagation under the influence of thermal effect. Rather, it intends to demonstrate the potential of the thermal effect of CO2 fluid in assisting the fracture propagation, and the importance of incorporating the compressibility of CO2 into fracture modeling and operation design. Failing to account for this thermal effect might underestimate the fracture complexity and stimulated reservoir volume.


SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 691-703 ◽  
Author(s):  
Qing-You Liu ◽  
Lei Tao ◽  
Hai-Yan Zhu ◽  
Zheng-Dong Lei ◽  
Shu Jiang ◽  
...  

Summary Waterless fracturing for shale-gas exploitation using supercritical carbon dioxide (scCO2) is both effective and environmentally friendly, and has become an extensive research topic. Previous researchers have focused on the chemical and physical properties and microstructure of sandstone, carbonate, and shale caprock, rather than on the properties of shale-gas formations. The macroscale mechanical properties and microscale fracture characteristics of Wufeng Shale exposed to scCO2 (at greater than 31.8°C and 7.29 MPa) are still not well-understood. To study the macroscale and microscale changes of shale subjected to scCO2, we obtained Chinese Wufeng Shale crops (Upper Ordovician Formation) from Yibin, Sichuan Basin, China. The shale samples were divided into two groups. The first group was exposed to scCO2, and the second group was exposed to nitrogen (N2). Scanning-electron-microscope (SEM) and X-ray-diffraction (XRD) images were taken to study the original microstructure and mineral content of the shale. To study the macroscale mechanical changes of Wufeng Shale immersed in scCO2 or N2 for 10 hours, triaxial tests with controlled coring angles were conducted. SEM and XRD images were taken after the triaxial tests. In the SEM images, tight bedding planes and undamaged minerals (with sharp edges and smooth surfaces) were found in N2-treated samples both before and after testing, indicating that exposure to N2 did not affect the microstructures. However, the SEM images for the microstructure scCO2-treated samples before and after testing were quite different. The bedding planes were damaged, which left some connected microfractures and corrosion holes, and some mineral types were broken into small particles and left with uneven mineral surfaces. This shows that scCO2 can change rock microstructures and make some minerals (e.g., calcite) fracture more easily. The complex microscale fractures and the decrease in strength for scCO2-treated shale aid the seepage and gathering of gas, enhancing shale-gas recovery. Knowledge of the multiscale physical and chemical changes of shale exposed to scCO2 is not only essential for scCO2 fracturing, but it is also important for scCO2 jets used to break rock and for the geological storage of CO2.


2017 ◽  
Vol 88 (10) ◽  
pp. 1184-1212 ◽  
Author(s):  
Tarek Abou Elmaaty ◽  
Eman Abd El-Aziz

This review highlights the great role of supercritical carbon dioxide fluid technology in textile dyeing processes. The unequivocal physical characteristics of supercritical carbon dioxide are presented and further researched to continue the development of high efficiency, compact dyeing to save energy and water in manufacturing processes. This review also focuses on the solubility of the dyes in scCO2 as well as the application of the technology to both synthetic and natural fabrics. Some factors relating to the economics of sustainable scCO2 technology are also outlined.


Sign in / Sign up

Export Citation Format

Share Document