Numerical solution of three mathematical models of gas adsorption in coal particle based on finite difference method

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122036
Author(s):  
Yueping Qin ◽  
Zhengduo Zhao ◽  
Hao Xu ◽  
Wei Liu ◽  
Fan Wu ◽  
...  
2014 ◽  
Vol 11 (04) ◽  
pp. 1350060 ◽  
Author(s):  
ZHIJIANG YUAN ◽  
LIANGAN JIN ◽  
WEI CHI ◽  
HENGDOU TIAN

A wide body of work exists that describes numerical solution for the nonlinear system of underwater towed system. Many researchers usually divide the tow cable with less number elements for the consideration of computational time. However, this type of installation affects the accuracy of the numerical solution. In this paper, a newly finite difference method for solving the nonlinear dynamic equations of the towed system is developed. The mathematical model of tow cable and towed body are both discretized to nonlinear algebraic equations by center finite difference method. A newly discipline for formulating the nonlinear equations and Jacobian matrix of towed system are proposed. We can solve the nonlinear dynamic equation of underwater towed system quickly by using this discipline, when the size of number elements is large.


2021 ◽  
Vol 1 (1) ◽  
pp. 18-23
Author(s):  
Pramod Pandey

In this article, we have presented a variable step finite difference method for solving second order boundary value problems in ordinary differential equations. We have discussed the convergence and established that proposed has at least cubic order of accuracy. The proposed method tested on several model problems for the numerical solution. The numerical results obtained for these model problems with known / constructed exact solution confirm the theoretical conclusions of the proposed method. The computational results obtained for these model problems suggest that method is efficient and accurate.


Author(s):  
Imam Basuki ◽  
C Cari ◽  
A Suparmi

<p class="Normal1"><strong><em>Abstract: </em></strong><em>Partial Differential Equations (PDP) Laplace equation can be applied to the heat conduction. Heat conduction is a process that if two materials or two-part temperature material is contacted with another it will pass heat transfer. Conduction of heat in a triangle shaped object has a mathematical model in Cartesian coordinates. However, to facilitate the calculation, the mathematical model of heat conduction is transformed into the coordinates of the triangle. PDP numerical solution of Laplace solved using the finite difference method. Simulations performed on a triangle with some angle values α and β</em></p><p class="Normal1"><strong><em> </em></strong></p><p class="Normal1"><strong><em>Keywords:</em></strong><em>  heat transfer, triangle coordinates system.</em></p><p class="Normal1"><em> </em></p><p class="Normal1"><strong>Abstrak</strong> Persamaan Diferensial Parsial (PDP) Laplace  dapat diaplikasikan pada persamaan konduksi panas. Konduksi panas adalah suatu proses yang jika dua materi atau dua bagian materi temperaturnya disentuhkan dengan yang lainnya maka akan terjadilah perpindahan panas. Konduksi panas pada benda berbentuk segitiga mempunyai model matematika dalam koordinat cartesius. Namun untuk memudahkan perhitungan, model matematika konduksi panas tersebut ditransformasikan ke dalam koordinat segitiga. Penyelesaian numerik dari PDP Laplace diselesaikan menggunakan metode beda hingga. Simulasi dilakukan pada segitiga dengan beberapa nilai sudut  dan  </p><p class="Normal1"><strong> </strong></p><p class="Normal1"><strong>Kata kunci :</strong> perpindahan panas, sistem koordinat segitiga.</p>


2021 ◽  
Vol 133 (2) ◽  
pp. 31-33
Author(s):  
B. Z. Kazymov ◽  
◽  
Т. А. Samadov ◽  
S. H. Novruzova ◽  
E. V. Gadashova ◽  
...  

The problem of determining reservoir properties (porosity, permeability) of gas layers developed in the depletion mode, whose rocks are subjected to creeping deformation with the Abel core, is considered. In order to determine the parameters that characterize reservoir properties of the reservoir, the authors indicate the possibility of using an appropriate numerical solution to the problem of determining the theoretical values of the reservoir volume-weighted average reservoir pressures over time, obtained using the finite difference method.


Sign in / Sign up

Export Citation Format

Share Document