Gas hydrate deposit formation in transient flowloop tests and mitigation with a surface treatment

Fuel ◽  
2021 ◽  
pp. 122532
Author(s):  
Marshall Pickarts ◽  
Sriram Ravichandran ◽  
Jose Delgado-Linares ◽  
Erika Brown ◽  
Vinod Veedu ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1345
Author(s):  
Oleg Bazaluk ◽  
Kateryna Sai ◽  
Vasyl Lozynskyi ◽  
Mykhailo Petlovanyi ◽  
Pavlo Saik

Ukraine is an energy-dependent country, with less that 50% of its energy consumption fulfilled by its own resources. Natural gas is of paramount importance, especially for industry and society. Therefore, there is an urgent need to search for alternative and potential energy sources, such as gas hydrate deposits in the Black Sea, which can reduce the consumption of imported gas. It is necessary to refine the process parameters of the dissociation of gas hydrate deposits with a heterogeneous structure. The analyzed known geological–geophysical data devoted to the study of the offshore area and the seabed give grounds to assert the existence of a significant amount of hydrate deposits in the Black Sea. An integrated methodological approach is applied, which consists of the development of algorithms for analytical and laboratory studies of gas volumes obtained during the dissociation of deposits with a heterogeneous structure. These data are used for the computer modelling of the dissociation zone in the Surfer-8.0 software package based on the data interpolation method, which uses three methods for calculating the volumes of modelling bodies. A 3D grid-visualization of the studied part of the gas hydrate deposit has been developed. The dissociation zone parameters of gas hydrate deposits with different shares of rock intercalation, that is, the minimum and maximum diameters, have been determined, and the potentially recoverable gas volumes have been assessed. The effective time of the process of gas hydrate deposit dissociation has been substantiated. The obtained research results of the dissociation process of gas hydrate deposits can be used in the development of new technological schemes for gas recovery from the deep-water Black Sea area.


2005 ◽  
Vol 233 (1-2) ◽  
pp. 45-59 ◽  
Author(s):  
I MACDONALD ◽  
L BENDER ◽  
M VARDARO ◽  
B BERNARD ◽  
J BROOKS

2012 ◽  
Vol 30 (15) ◽  
pp. 1562-1570 ◽  
Author(s):  
B. Figueira ◽  
W.-L. Delandro-Clarke ◽  
J. Marcelle-De Silva ◽  
W. Bertrand
Keyword(s):  

2021 ◽  
Author(s):  
Marshall A Pickarts ◽  
Jose Delgado-Linares ◽  
Erika Brown ◽  
Vinod Veedu ◽  
Carolyn A. Koh

Abstract Numerous solids including gas hydrates, waxes, and asphaltenes have the potential to form in the production lines of gas and oil fields. This creates a highly non-ideal scenario as the accumulation of said species leads to flow assurance issues, especially with long-term processes like deposition. Since an ever-increasing amount of material is deposited in place at the pipe surface, production stoppage or active mitigation efforts become inevitable. The latter production issues result in increased safety risks and operational expenditures. Therefore, a cost-effective, passive deposition mitigation technology, such as a pipeline coating or surface treatment is especially appealing. The ability to address multiple pipeline flow assurance issues simultaneously without actively disrupting production would represent a dramatic step forward in this area. This study is part of a long-term ongoing effort that evaluates the performance and application of an omniphobic surface treatment for solids deposition prevention in industrially relevant systems. In particular, this specific work concentrates on the efficacy and robustness of the treatment under fully flowing conditions. The apparatuses utilized for this include two flowloops: a lab-scale, high-pressure flowloop for gas hydrate and surface treatment durability studies, and a bench-scale, atmospheric pressure loop for crude oil and asphaltene experiments. Film growth in high-pressure flowloop tests corroborated previous reports of delayed gas hydrate nucleation observed in rocking cells. Without the aid of the memory effect, treated oil-dominated experiments never experienced hydrate formation, spending upwards of a week in the hydrate stability zone (at the subcooled/fluid test conditions). Subsequent tests which utilized the memory effect then revealed that the hydrate formation rate reduced in the presence of the surface treatment compared to a bare stainless-steel surface. This testing was part of a larger set of trials conducted in the flowloop, which lasted about one year. The surface treatment durability under flowing conditions was evaluated during this time. Even after experiencing ∼4000 operating hours and 2 full pressure cycles, no evidence of delamination or damage was detected. Finally, as part of an extension to previous work, corroded surface asphaltene deposition experiments were performed in a bench-top flowloop. Treated experiments displayed an order of magnitude reduction in both total oil (all fractions of crude oil) and asphaltene fraction deposited.


Sign in / Sign up

Export Citation Format

Share Document