pipe surface
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 69)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Mingzhang Yang ◽  
Jing Liu

Corrosion under insulation (CUI) refers to the external corrosion of piping and vessels when they are encapsulated in thermal insulation. To date, very limited information (especially electrochemical data) is available for these “difficult-to-test” CUI conditions. This study was aimed at developing a novel electrochemical sensing method for in situ CUI monitoring and analysis. Pt-coated Ti wires were used to assemble a three-electrode electrochemical cell over a pipe surface covered by thermal insulation. The CUI behavior of X70 carbon steel (CS) and 304 stainless steel (SS) under various operating conditions was investigated using mass loss, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) measurements. It was found that both the consecutive wet and dry cycles and cyclic temperatures accelerated the progression of CUI. LPR and EIS measurements revealed that the accelerated CUI by thermal cycling was due to the reduced polarization resistance and deteriorated corrosion film. Enhanced pitting corrosion was observed on all tested samples after thermal cycling conditions, especially for CS samples. The proposed electrochemical technique demonstrated the ability to obtain comparable corrosion rates to conventional mass loss data. In addition to its potential for in situ CUI monitoring, this design could be further applied to rank alloys, coatings, and inhibitors under more complex exposure conditions.


2021 ◽  
Vol 43 (4) ◽  
pp. 34-42
Author(s):  
V.S. Oliinyk ◽  
P.G. Krukovskyi ◽  
A.I. Deineko

The results of the study of the intensification of the heat transfer process under forced air convection in the annular gap of a pipe-in-pipe heat exchanger with a spiral-wire intensifier located near the outer surface of the inner pipe are presented. The intensifier does not touch the pipe surface. The height of the wire of the intensifier is taken as 1.5 mm. The change in the winding pitch varied within the range of 12-20mm. Boundary conditions of the first kind + 20 ° C are set on the inner surface of the inner pipe. The temperature of the air moving in the annular gap is 300 ° C. The air velocity varied from 6 to 15 m / s. For the CFD model of a pipe-in-pipe heat exchanger, the use of a computational grid with 4.7 million elements is justified. The CFD model was validated using literature data. Based on the analysis of the ratio of the intensified Nusselt number to the Nusselt number for a smooth pipe, a 1.7-fold increase in heat transfer was found for Reynolds numbers from 5000 to 7000. This result is explained by the periodic destruction of the boundary layer along the pipe. With a further increase in Reynolds numbers to 13000, the intensification of heat transfer decreases from 1.7 to 1.3, which is explained by an increase in the vortex zone immediately behind the wire and the appearance of recirculation zones that make a minimum contribution to heat transfer. It has been determined that the spiral-wire intensifier with the maximum possible step of 20 mm contributes to the greatest increase in heat transfer by 1.7 times and has the smallest coefficient of hydraulic friction of 0.076-0.06 for the studied range of Reynolds numbers.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Balqies A. Abbas ◽  
Mustafa B. Al-Hadithi

Two-dimensional numerical simulation is performed aiming to understand the role of buoyancy force convection during restricted solidification of phase change materials (PCMs) inside a shell and tube heat exchanger according to annulus cross section. Where the transient history of PCM solidification evolution was studied. The governing equations of mass, momentum and energy are solved to study the solidification behavior inside the annulus geometry. The fluid flow in the mushy zone was accounted for using the Darcy drag source term in momentum, and the liquid percentage in each cell was updated using the enthalpy-porosity method. Thermal conditions of the outer cylinder insulated (adiabatic) and the inner cylinder at constant temperature (isothermal). The results are presents as a temperature contour and liquid fraction distribution in the domain. The predicted result shows the capturing phenomenon: primary heat conduction in all regions, then heat convection and conduction become dominant in the top and bottom regions, respectively. The max. and min. temperature changes near the outer pipe surface during 16 hrs. are 56.25% and 42.5%, respectively.


JTAM ROTARY ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ilham Arif Firmansyah ◽  
Aqli Mursadin

Supply of compressed air has an important role in continuity of operation power plant, failures that occur in operation of engine in this unit can affect all plant operations that can result in decreased production levels. To determine the magnitude of loss of pressure or energy loss lost in pressurized air piping system at plant located in PT. Indocement Tunggal Prakarsa, Tbk. Tarjun Plant-12. Evaluation of pressure reduction losses in the air system is focused on losses caused by system leakage and pressure drops in the distribution lines caused by several factors including friction in straight pipes, bends, fittings, reducers and existing components, and knowing the loss of costs due to compressor pressure drop. The pressure drop in the pipe is very dependent on pipe diameter, besides distance and supporting components on piping system also affect the pressure drop. Based on calculation, there was a decrease in pressure of 1603660,895 Pa, from pressure drop caused by friction of straight pipe and connection and actual condition of pipe surface which was likely to have been corroded, making surface rough. system decline that occurred in the compressor resulted in a loss of operational costs of 5,760,451 rupiah / week.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012082
Author(s):  
M. Seiersten ◽  
A. Dugstad ◽  
J. Nossen ◽  
O. Sendstad

Abstract Low alloyed carbon steel is the only viable material of construction for long pipelines transporting unprocessed gas-condensate. The water that condenses is highly corrosive because it contains dissolved acid gases, i.e., CO2, H2S and organic acids like acetic and formic acid. The high velocity gas also contains droplets of water and condensate, and these will deposit if they hit the steel surface. Monoethylene glycol (MEG) injected to prevent ice and hydrates must be considered when predicting the composition and corrosivity of the aqueous phases in the pipeline. The liquids gathering at the bottom of the pipe have a higher heat capacity than the gas, and the temperature at the top of the pipe will be slightly lower than at the bottom. As the produced fluids cool during the transport from the hot wells to the process plant, water will condense on the cold pipe surface and more at the top than at the bottom. The literature on Top-of-line corrosion (ToLC) has grown steadily since the first reported case in 1960. There are also several prediction models for ToLC. This review is an overview of the main factors that cause ToLC and how these are modelled. Mass transfer from the aqueous phase at the bottom to the top contribute to the condensation. Despite the low MEG to water ratio in the gas due to the difference in vapour pressure, the fraction of MEG in the condensing water may be considerable. The concentration of MEG in the aqueous phase at the top depends on the mass transfer from bottom. The same is the case for organic acids. Liquid droplets entrained in the gas may deposit top of line and contribute to the chemistry of the aqueous phase. Models for ToLC must thus not only predict the composition of the condensing phases but also the mass transfer to be able to estimate the corrosion rate.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jan-Henrik Kupfernagel ◽  
Jan Christopher Hesse ◽  
Markus Schedel ◽  
Bastian Welsch ◽  
Hauke Anbergen ◽  
...  

AbstractA large share of the primary energy is consumed to provide space heating. Geothermal energy offers a regenerative alternative. For reasons of efficiency and environmental protection, it is important to ensure the system integrity of a borehole heat exchanger (BHE). Previous investigations have focused on the individual components of the BHE or on the grout and pipe systems’ integrity. This study focused on the analysis of the hydraulic system integrity of the complete subsoil–grout–pipe system as well as possible thermally induced changes. For this purpose, a pilot-scale experiment was built to test a 1-m section of a typical BHE under in situ pressure, hydraulic and temperature conditions. During the tests the hydraulic system permeability of the soil and the BHE was measured continuously and separately from each other. In addition, the temperature monitoring array was installed in a 50-cm cross-sectional area. Significant temperature-related fluctuations in the sealing performance could be observed. Hydraulic conductivity limits required by VDI 4640-2 (Thermal use of the underground—ground source heat pump systems, 2019) were exceeded without frost action. The succeeding application of freeze–thaw cycles further enhances the system permeability. The study shows that the thermally induced effects on the system integrity of the BHE are larger and more significant than the subsequent frost-induced effects. The hydrophobic character of the high-density polyethylene (PE-HD) pipes as well as its high coefficient of thermal expansion seem to be the main points of weakness in the system. Optimization research should focus on the interface connection between grout and pipe, whereby hydrophilic pipe materials such as stainless steel or aluminum should also be considered as well as manipulation of the pipe surface properties of PE-HD.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5877
Author(s):  
Dessalegn Ahmed Yeshanew ◽  
Moera Gutu Jiru ◽  
Gulam Mohammed Sayeed Ahmed ◽  
Irfan Anjum Badruddin ◽  
Manzoore Elahi M. Soudagar ◽  
...  

Water pipe surface deterioration is the result of continuous electrochemical reactions attacking the surface due to the interaction of the pipe surface with environments through the time function. The study presents corrosion characterization at the surface and sub-surface of damaged ductile iron pipe (DIP) and galvanized steel (GS) pipes which served for more than 40 and 20 years, respectively. The samples were obtained from Addis Ababa city water distribution system for the analysis of corrosion morphology patterns at different surface layers. Mountains 8.2 surface analysis software was utilized based on the ISO 25178-2 watershed segmentation method to investigate corrosion features of damaged pipe surface and to evaluate maximum pit depth, area, and volume in-situ condition. Based on the analysis maximum values of pit depth, area and volume were 380 μ m, 4000 μm2, and 200,000 μm3, respectively, after 25% loss of the original 8 mm thickness of DIP. Similarly, the pit depth of the GS pipe was 390 μm whereas the maximum pit area and volume are 4000 μm2 and 16,000 μm3, respectively. In addition, characterizations of new pipes were evaluated to study microstructures by using an optical microscope (OM), and a scanning electron microscope (SEM) was used to analyze corrosion morphologies. Based on the SEM analysis, cracks were observed at the sub-surface layer of the pipes. The results show that uniform corrosion attacked the external pipe surface whereas pitting corrosion damaged the subsurface of pipes. The output of this study will be utilized by water suppliers and industries to investigate corrosion phenomena at any damage stage.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2725
Author(s):  
Fei-Lung Liu ◽  
Shu-Kai S. Fan ◽  
Ebede Ndi ◽  
Jih-Fu Tu

Ensuring the uninterrupted flow of the complex piped water distribution networks to combat the COVID-19 pandemic in Taiwan’s hospitals has become a priority. The process involved in the no-shutdown pipe fixing freezing method depends on the water supply system design and the conditions of the environment. Before carrying out repair works onsite, two experiments were undertaken to estimate the liquid nitrogen supply rate and make sure of its adequacy in relation to the fixing system’s heat transfer performance. Using an iron exhaust pipe and galvanized steel inlet pipe with jacket for a 50-mm-diameter water pipe, temperature variations and timelapse were recorded and analyzed. The results showed that the frost length on the water pipe surface at either side of the jacket was 1.2–1.8 times of the pipe diameter. The ice length (~45 cm) was longer than the jacket (~34 cm), and the water pressure at the jacket inlet side was 1 kg/cm2 greater than at the exit. Injecting the right amount of liquid nitrogen into the inlet and at a proper speed between 0.7 and 0.8 kg/min will ensure a safe and smooth completion of the ice plug formation process. The design and processes have been used successfully in hospital water supply system fixing works.


2021 ◽  
Author(s):  
Amal Gunatilake ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

A reliable robotic localization method is required for comparing three-dimensional pipe maps obtained via laser scans at various times for accurately monitoring the evolution of internal pipe surface defects. Existing robotic localization methods have limitations when visual features vanish due to changes in the pipe environment or when encoder data becomes highly uncertain due to long-distance robotic traverses. To address this issue, we leverage battery-free ultra-high frequency radio frequency identification (UHF-RFID) sensors for transmitting wireless signals to a two-antenna reader integrated mobile robotic system. Although there are literature on the investigation of UHFRFID behaviors and their applications in indoor environments, analysis of the same for in-pipe scenarios was not well studied. In this paper, we evaluate the UHF-RFID sensor signals inside a field extracted pipeline. Firstly, we examine the UHF-RFID sensor signal patterns through repeated robotic scans. Secondly, we examine how the placement of UHF-RFID reader antennas affects the transmission of UHF-RFID sensor signals, as well as we study the effects of robotic traverse direction and speed on the UHF-RFID wireless signals. Finally, we examine whether identical UHF-RFID sensors generate the same pattern when placed in a pipeline. Overall, the experimental evaluation demonstrates that the use of two-antenna UHF-RFID readers can ameliorate the capabilities of robotic localization in the pipeline.


Sign in / Sign up

Export Citation Format

Share Document