deposit formation
Recently Published Documents


TOTAL DOCUMENTS

642
(FIVE YEARS 120)

H-INDEX

41
(FIVE YEARS 5)

OENO One ◽  
2022 ◽  
Vol 56 (1) ◽  
pp. 41-51
Author(s):  
Veronica Vendramin ◽  
Daniele Pizzinato ◽  
Céline Sparrow ◽  
Daniele Pagni ◽  
Fabio Cascella ◽  
...  

Flavonols are known for causing undesirable deposits in both red and white wines. Among flavonols, quercetin is widely considered the principal factor determining this phenomenon. One of the most accredited hypotheses claims that glycosylated derivatives of quercetin undergo hydrolysis of the glycosylic bond during the fermentation and the wine ageing, releasing quercetin aglycone, which is much less soluble in water solution and causes the precipitation. Our work describes the dynamics of quercetin-derived deposition in Chianti wines and purposes a new method, based on the enzymatic quercetin glycoside hydrolysis of the glycosidic bond, to prevent the unpleasant deposit formation during the wine ageing. In our study, forty-four monovarietal wines obtained from 7 different Italian grape varieties were compared in the content of total quercetin-3-glycosides (rutin, quercetin-3-glucuronide, quercetin-3-glucoside) and quercetin aglycone. The data confirmed the literature revealing Sangiovese as the richest in quercetin. We tested then, in a Sangiovese wine, four fining agents (PVPP, PVPP/PVI, bentonite and a vegetal protein) for quercetin removal, showing that only the PVPP had a modest aglycone removal activity. Then, the kinetics of deposit formation was studied in three Chianti wines which differed in the initial content of quercetin aglycone. This investigation highlighted that the chemical equilibrium of quercetin changes over time as the turbidity slowly increases, as previously documented. The comparison of the three dynamics also permitted us to conclude that different wines show a different ability to keep in solution quercetin. Finally, a new approach for deposit prevention was studied by a precocious Chianti wine treatment with a pectolytic enzyme having secondary glycosidase activity. This enzyme significantly accelerated the hydrolysis of glycosylated quercetins into their aglycone, which could enhance the deposition before bottling, without serious wine colour depletion. Our study represents the first evidence of the promising potential of using the pectolytic enzyme with secondary glycosidase activity to prevent quercetin deposit during Chianti ageing, in a way that is compatible with organic wine production.


Author(s):  
Aleksandr D. Korobov ◽  
◽  
Lydmila A. Korobova ◽  

The paper is meant to prove that structural reconstruction of riftogenic basins is accompanied by the intensification of tectonichydrothermal activity. It controls the mobility of gaseous-liquid hydrocarbons during their primary and lateral migration in the process of deposit formation. The intensity index of tectonic-hydrothermal activation is equal to the ratio of maximum paleotemperatures of gaseous-liquid inclusions to the paleotemperatures calculated from vitrinite reflectance values. This parameter determined in the same intervals of a geologic section reflects the level of paleothermal incongruity in the natural system. It can be used to make predictive estimates of the areas for hydrocarbon materials. The values of this parameter vary in the range of 1.5–2.5 in promising riftogenic areas with the source rocks in the temperature zone of 80–160°С due to conducive heating.


Fuel ◽  
2021 ◽  
pp. 122532
Author(s):  
Marshall Pickarts ◽  
Sriram Ravichandran ◽  
Jose Delgado-Linares ◽  
Erika Brown ◽  
Vinod Veedu ◽  
...  

Author(s):  
M. Alves-Fortunato ◽  
A. Baroni ◽  
L. Neocel ◽  
M. Chardin ◽  
M. Matrat ◽  
...  

Author(s):  
Amparo Pazo ◽  
Magín Lapuerta ◽  
Anselmo Acosta ◽  
Juan J. Hernández ◽  
Esperanza Monedero

AbstractWith the aim to prevent possible power plant malfunction due to the feedstock properties and suggest possible ash applications, feedstock samples and bottom and fly ash samples collected along more than a year in a 16 MW suspension-fired boiler power plant, fed mainly with pulverized exhausted olive cake (orujillo), were studied. A detailed characterization of fly and bottom ash has been done, as well as a seasonal evolution study. Altogether in order to find any trend on the ash composition changes and to study the relationship between ash (both fly and bottom fractions) and, on the one hand, the feedstock composition, and on the other hand, the troublesome deposit formation. A relationship between deposit growth and higher Cl and Na content in the feedstock has been noticed, showing the need for some control on these feedstock’s components. The high Cl and Na content is attributed to external contamination. Furthermore, the high Al content in the feedstock and the strong relationship between Al, Fe and Si (indicating a common origin) suggest some biomass soil contamination. However, no relationship was observed between troublesome deposit formation and the hypothesized biomass soil contamination. Graphic Abstract


Author(s):  
K.V. Altunin

The article is devoted to theoretical research connected with elaboration of a new calculation procedure for hydrocarbon deposit layer thickness. A common problem of deposit formation in heat engines and power plants is thoroughly investigated. In addition, the wall composition, temperature, time and a number of life cycles, etc. are mentioned as key factors that have direct influence on this heat phenomenon. The paper describes thermophysical properties of deposits in fuel feed systems of different engines. The literature search and analysis did not reveal any similar procedures of calculation of hydrocarbon deposit layer thickness that could be connected with electrical properties of a wall or a deposit. The paper presents new equations for calculating the deposit formation thickness and rate based upon thermal and electrical nature of this process. These new equations led to elaboration of the new calculation procedure of hydrocarbon deposit layer thickness on a metal wall for any fuel channel of a heat engine or a power plant based on liquid hydrocarbon fuel or coolant. The new calculation technique was verified by experiments in aviation kerosene boiling in volume, which clarified special features in the application of new equations. Owing to the universal character of the proposed technique, it can be used for calculating the deposit formation virtually in all the known heat engines and power plants, for various operating conditions, for different metal wall compositions, at various fuel flow rates and pressures, temperature regimes inside fuel-feed and cooling channels.


2021 ◽  
Author(s):  
Kiersten M Ruff ◽  
Yoon Hee Choi ◽  
Dezerae Cox ◽  
Angelique Royale Ormsby ◽  
Yoochan Myung ◽  
...  

Protein homeostasis involves regulation of the concentrations of unfolded states of globular proteins. Dysregulation can cause phase separation leading to protein-rich deposits. Here, we uncover the sequence-grammar that influences the triad of folding, binding, and phase equilibria of unfolded proteins in cells. We find that the interactions that drive deposit formation of ALS-associated superoxide dismutase 1 mutations are akin to those that drive phase separation and deposit formation in variants of a model protein, barnase. We examined a set of barnase variants to uncover the molecular interactions that drive phase separation of unfolded proteins and formation of unfolded protein deposits (UPODs). The formation of UPODs requires protein destabilization, to increase the concentration of unfolded states, and a requisite sequence grammar to enable cohesive interactions among unfolded proteins. We further find that molecular chaperones, Hsp40 and Hsp70, destabilize UPODs by binding preferentially to and processing unfolded proteins in the dilute phase.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 974
Author(s):  
Shuai Wang ◽  
Yufeng Guo ◽  
Kuo Liu ◽  
Zhuang Yang ◽  
Yajing Liu ◽  
...  

The deposit-forming problem is one of the main bottlenecks restricting the yield and production benefit of iron ore pellets produced by coal-fired rotary kilns. In order to implement measures to ensure the efficient production of pellets by coal-fired rotary kilns, the mechanism and influencing factors on the deposit formation were reviewed. The pellet powder and coal ash come together to form the material base of the deposit. Meanwhile, the local reducing atmosphere caused by the continued combustion of residual carbon increases the FeO content, resulting in the formation of low-melting-point silicates. Moreover, alkali metal elements in coal ash can also promote liquid phase formation to cause serious deposit aggregation problems. During high-temperature roasting, the liquid phase corrodes the surface of the refractory brick to form the initial deposit, whereafter, it binds the pellet powder and coal ash from the material layer, which causes the deposit to accumulate continuously. The deposit formation of coal-fired rotary kilns is the result of interaction between many factors, which includes the quality of the green pellets, the composition of coal ash, the combustion efficiency of pulverized coal, roasting temperature, FeO content and alkali metal input. Finally, it is recommended that some measures to mitigate deposit formation can be adopted, such as increasing the compression strength of preheated pellets, choosing high-quality raw materials with low alkali metals, improving the combustion of pulverized coal.


Sign in / Sign up

Export Citation Format

Share Document