Enabling technologies for fog computing in healthcare IoT systems

2019 ◽  
Vol 90 ◽  
pp. 62-78 ◽  
Author(s):  
Ammar Awad Mutlag ◽  
Mohd Khanapi Abd Ghani ◽  
N. Arunkumar ◽  
Mazin Abed Mohammed ◽  
Othman Mohd
Author(s):  
R. Hanumantharaju ◽  
D. Pradeep Kumar ◽  
B. J. Sowmya ◽  
G. M. Siddesh ◽  
K. N. Shreenath ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2171
Author(s):  
Vaibhav Fanibhare ◽  
Nurul I. Sarkar ◽  
Adnan Al-Anbuky

The Tactile Internet (TI) is an emerging area of research involving 5G and beyond (B5G) communications to enable real-time interaction of haptic data over the Internet between tactile ends, with audio-visual data as feedback. This emerging TI technology is viewed as the next evolutionary step for the Internet of Things (IoT) and is expected to bring about a massive change in Healthcare 4.0, Industry 4.0 and autonomous vehicles to resolve complicated issues in modern society. This vision of TI makes a dream into a reality. This article aims to provide a comprehensive survey of TI, focussing on design architecture, key application areas, potential enabling technologies, current issues, and challenges to realise it. To illustrate the novelty of our work, we present a brainstorming mind-map of all the topics discussed in this article. We emphasise the design aspects of the TI and discuss the three main sections of the TI, i.e., master, network, and slave sections, with a focus on the proposed application-centric design architecture. With the help of the proposed illustrative diagrams of use cases, we discuss and tabulate the possible applications of the TI with a 5G framework and its requirements. Then, we extensively address the currently identified issues and challenges with promising potential enablers of the TI. Moreover, a comprehensive review focussing on related articles on enabling technologies is explored, including Fifth Generation (5G), Software-Defined Networking (SDN), Network Function Virtualisation (NFV), Cloud/Edge/Fog Computing, Multiple Access, and Network Coding. Finally, we conclude the survey with several research issues that are open for further investigation. Thus, the survey provides insights into the TI that can help network researchers and engineers to contribute further towards developing the next-generation Internet.


Author(s):  
Istabraq M. Al-Joboury ◽  
Emad H. Al-Hemiary

Fog Computing is a new concept made by Cisco to provide same functionalities of Cloud Computing but near to Things to enhance performance such as reduce delay and response time. Packet loss may occur on single Fog server over a huge number of messages from Things because of several factors like limited bandwidth and capacity of queues in server. In this paper, Internet of Things based Fog-to-Cloud architecture is proposed to solve the problem of packet loss on Fog server using Load Balancing and virtualization. The architecture consists of 5 layers, namely: Things, gateway, Fog, Cloud, and application. Fog layer is virtualized to specified number of Fog servers using Graphical Network Simulator-3 and VirtualBox on local physical server. Server Load Balancing router is configured to distribute the huge traffic in Weighted Round Robin technique using Message Queue Telemetry Transport protocol. Then, maximum message from Fog layer are selected and sent to Cloud layer and the rest of messages are deleted within 1 hour using our proposed Data-in-Motion technique for storage, processing, and monitoring of messages. Thus, improving the performance of the Fog layer for storage and processing of messages, as well as reducing the packet loss to half and increasing throughput to 4 times than using single Fog server.


Sign in / Sign up

Export Citation Format

Share Document