network function
Recently Published Documents


TOTAL DOCUMENTS

1210
(FIVE YEARS 525)

H-INDEX

52
(FIVE YEARS 15)

Author(s):  
Е.П. Трофимов

Предложен алгоритм последовательной обработки данных на основе блочного псевдообращения матриц полного столбцового ранга. Показывается, что формула блочного псевдообращения, лежащая в основе алгоритма, является обобщением одного шага алгоритма Гревиля псевдообращения в невырожденном случае и потому может быть использована для обобщения метода нахождения весов нейросетевой функции LSHDI (linear solutions to higher dimensional interlayer networks), основанного на алгоритме Гревиля. Представленный алгоритм на каждом этапе использует найденные на предыдущих этапах псевдообратные к блокам матрицы и, следовательно, позволяет сократить вычисления не только за счет работы с матрицами меньшего размера, но и за счет повторного использования уже найденной информации. Приводятся примеры применения алгоритма для восстановления искаженных работой фильтра (шума) одномерных сигналов и двумерных сигналов (изображений). Рассматриваются случаи, когда фильтр является статическим, но на практике встречаются ситуации, когда матрица фильтра меняется с течением времени. Описанный алгоритм позволяет непосредственно в процессе получения входного сигнала перестраивать псевдообратную матрицу с учетом изменения одного или нескольких блоков матрицы фильтра, и потому алгоритм может быть использован и в случае зависящих от времени параметров фильтра (шума). Кроме того, как показывают вычислительные эксперименты, формула блочного псевдообращения, на которой основан описываемый алгоритм, хорошо работает и в случае плохо обусловленных матриц, что часто встречается на практике The paper proposes an algorithm for sequential data processing based on block pseudoinverse of full column rank matrixes. It is shown that the block pseudoinverse formula underlying the algorithm is a generalization of one step of the Greville’s pseudoinverse algorithm in the nonsingular case and can also be used as a generalization for finding weights of neural network function in the LSHDI algorithm (linear solutions to higher dimensional interlayer networks). The presented algorithm uses the pseudoinversed matrixes found at each step, and therefore allows one to reduce the computations not only by working with matrixes of smaller size but also by reusing the already found information. Examples of application of the algorithm for signal and image reconstruction are given. The article deals with cases where noise is static but the algorithm is similarly well suited to dynamically changing noises, allowing one to process input data in blocks on the fly, depending on changes. The block pseudoreverse formula, on which the described algorithm is based, works well in the case of ill-conditioned matrixes, which is often encountered in practice


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Haike Liu ◽  
Huajian Zhang ◽  
Kai Yang ◽  
Jiali Li

With the development of new satellite payload technology, in order to improve the utilization of system resources, research is based on software-defined network (SDN) and network function virtualization (NFV) gateway architecture. Based on this architecture, the system realizes global resource management and overall data distribution, which can solve the problem of resource allocation and maximum/minimum rate guarantee between different VNO terminals under different beams, different gateways, and different satellites. For this, a global bandwidth management method can be used which is mainly a process of management to control the traffic on a communication link. The proposed global resource management and control method can be based on the rate guarantee value of the VNO/terminal configured in the system as the basic limiting condition and reallocate the rate guarantee value limiting parameter according to the resource application status of the online terminal. The method can maximize the resource utilization of the entire satellite communication system and satisfy the resource request of the user terminal as much as possible.


Author(s):  
Arun Kumar. Ch

Abstract: The new challenges introduced in the wireless communication systems by the rapid developments of high-speed trains (HSTs) and more usage of the smartphones. The smart transportation involves the large crowd with smart phones, that requires a more efficient network for communication without disconnection. To achieve that, the handover process, need to be done quickly with respect to the speed of the train. To sustain its session connectivity to the internet, it requires the disconnection from the current access point (APc) to the next access point (APn). IN this project, we use the open flow and open stack protocols for integrating the interface between the infrastructure and the controller. Along with this, the integration of software-defined networking and network function virtualization is also done. The project majorly concentrated on the modification of the routes of the packet flow from one access point to the next required access point with the use of the triggering signal from the train which gives the location of the train. The suggested method works by the transmitting the signal from train to the next access point in advance so that the SDN controller changes the path of the packets to the next access point. The parameters like Signal strength, packet loss, average delay, path delay is evaluated. Along with these parameters the energy dissipation near the network also evaluated. The experimental results are evaluated using MATLAB tool. Keywords: Network Function Virtualization, OpenFlow in SDN, OpenStack, Software Defined Network.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Anssi Pelkonen ◽  
Cristiana Pistono ◽  
Pamela Klecki ◽  
Mireia Gómez-Budia ◽  
Antonios Dougalis ◽  
...  

Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
Hefei Hu ◽  
Chen Yang ◽  
Lingyi Xu ◽  
Tangyijia Song ◽  
Bonaho Bocochi Dalia

With network function virtualization (NFV) expanding from network center to edge, the service function chain (SFC) will gradually approach users to provide lower delay and higher-quality services. User mobility seriously affects the quality of service (QoS) provided by the mobile-aware SFC. Therefore, we must migrate the SFC to provide continuous services. In the user estimable movement scenario with a known mobile path and estimable arrival time, we establish the estimation model of user arrival time to obtain the estimated arrival time. Then, to reduce the time that the user is waiting for the migration completion, we propose a softer migration strategy migrating mobile-aware SFC before the user arrives at the corresponding access node. Moreover, for the problem of routing and bandwidth allocation (RBA), to reduce the migration failure rate, the paper proposes a path load adaptive routing and bandwidth allocation (PLARBA) algorithm adjusting the migration bandwidth according to the path load. The experimental results show that the proposed algorithm has significant advantages in reducing the user’s waiting time by more than 90%, decreasing migration failure rate by up to 75%, and improving QoS compared to the soft migration strategy and two RBA algorithms.


Author(s):  
Lavanya-Nehan Degambur ◽  
Avinash Mungur ◽  
Sheeba Armoogum ◽  
Sameerchand Pudaruth

The advent of 4G and 5G broadband wireless networks brings several challenges with respect to resource allocation in the networks. In an interconnected network of wireless devices, users, and devices, all compete for scarce resources which further emphasizes the fair and efficient allocation of those resources for the proper functioning of the networks. The purpose of this study is to discover the different factors that are involved in resource allocation in 4G and 5G networks. The methodology used was an empirical study using qualitative techniques by performing literature reviews on the state of art in 4G and 5G networks, analyze their respective architectures and resource allocation mechanisms, discover parameters, criteria and provide recommendations. It was observed that resource allocation is primarily done with radio resource in 4G and 5G networks, owing to their wireless nature, and resource allocation is measured in terms of delay, fairness, packet loss ratio, spectral efficiency, and throughput. Minimal consideration is given to other resources along the end-to-end 4G and 5G network architectures. This paper defines more types of resources, such as electrical energy, processor cycles and memory space, along end-to-end architectures, whose allocation processes need to be emphasized owing to the inclusion of software defined networking and network function virtualization in 5G network architectures. Thus, more criteria, such as electrical energy usage, processor cycle, and memory to evaluate resource allocation have been proposed.  Finally, ten recommendations have been made to enhance resource allocation along the whole 5G network architecture.


Sign in / Sign up

Export Citation Format

Share Document