scholarly journals A Survey of the Tactile Internet: Design Issues and Challenges, Applications, and Future Directions

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2171
Author(s):  
Vaibhav Fanibhare ◽  
Nurul I. Sarkar ◽  
Adnan Al-Anbuky

The Tactile Internet (TI) is an emerging area of research involving 5G and beyond (B5G) communications to enable real-time interaction of haptic data over the Internet between tactile ends, with audio-visual data as feedback. This emerging TI technology is viewed as the next evolutionary step for the Internet of Things (IoT) and is expected to bring about a massive change in Healthcare 4.0, Industry 4.0 and autonomous vehicles to resolve complicated issues in modern society. This vision of TI makes a dream into a reality. This article aims to provide a comprehensive survey of TI, focussing on design architecture, key application areas, potential enabling technologies, current issues, and challenges to realise it. To illustrate the novelty of our work, we present a brainstorming mind-map of all the topics discussed in this article. We emphasise the design aspects of the TI and discuss the three main sections of the TI, i.e., master, network, and slave sections, with a focus on the proposed application-centric design architecture. With the help of the proposed illustrative diagrams of use cases, we discuss and tabulate the possible applications of the TI with a 5G framework and its requirements. Then, we extensively address the currently identified issues and challenges with promising potential enablers of the TI. Moreover, a comprehensive review focussing on related articles on enabling technologies is explored, including Fifth Generation (5G), Software-Defined Networking (SDN), Network Function Virtualisation (NFV), Cloud/Edge/Fog Computing, Multiple Access, and Network Coding. Finally, we conclude the survey with several research issues that are open for further investigation. Thus, the survey provides insights into the TI that can help network researchers and engineers to contribute further towards developing the next-generation Internet.

Fog Computing ◽  
2018 ◽  
pp. 198-207 ◽  
Author(s):  
Chintan M. Bhatt ◽  
C. K. Bhensdadia

The Internet of Things could be a recent computing paradigm, defined by networks of extremely connected things – sensors, actuators and good objects – communication across networks of homes, buildings, vehicles, and even individuals whereas cloud computing could be ready to keep up with current processing and machine demands. Fog computing provides architectural resolution to deal with some of these issues by providing a layer of intermediate nodes what's referred to as an edge network [26]. These edge nodes provide interoperability, real-time interaction, and if necessary, computational to the Cloud. This paper tries to analyse different fog computing functionalities, tools and technologies and research issues.


2017 ◽  
Vol 9 (4) ◽  
pp. 105-113 ◽  
Author(s):  
Chintan Bhatt ◽  
C. K. Bhensdadia

The Internet of Things could be a recent computing paradigm, defined by networks of extremely connected things – sensors, actuators and good objects – communication across networks of homes, buildings, vehicles, and even individuals whereas cloud computing could be ready to keep up with current processing and machine demands. Fog computing provides architectural resolution to deal with some of these issues by providing a layer of intermediate nodes what's referred to as an edge network [26]. These edge nodes provide interoperability, real-time interaction, and if necessary, computational to the Cloud. This paper tries to analyse different fog computing functionalities, tools and technologies and research issues.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2143
Author(s):  
Sara Paiva ◽  
Mohd Abdul Ahad ◽  
Gautami Tripathi ◽  
Noushaba Feroz ◽  
Gabriella Casalino

The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encouraging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility-as-a-service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-42
Author(s):  
Divya Saxena ◽  
Jiannong Cao

Generative Adversarial Networks (GANs) is a novel class of deep generative models that has recently gained significant attention. GANs learn complex and high-dimensional distributions implicitly over images, audio, and data. However, there exist major challenges in training of GANs, i.e., mode collapse, non-convergence, and instability, due to inappropriate design of network architectre, use of objective function, and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions, and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on the broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present promising research directions in this rapidly growing field.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ahmad Alalewi ◽  
Iyad Dayoub ◽  
Soumaya Cherkaoui

Author(s):  
Olena Solodka ◽  

As a result of the study it was found that the issue of determining the components of information sovereignty of Ukraine and their legal nature can be considered from two main approaches: the separation of functional areas (aspects) of information sovereignty or the separation of its system elements. In particular, the information sovereignty of Ukraine as a complex category of information law, the elements of which reflect various forms of information and areas of its manifestation in modern society, in the most general form includes the following functional aspects: information-humanitarian and information-technological. The information-humanitarian component of information sovereignty includes three aspects: national (people's), state and personal, and is primarily related to the informational identification of a person, nation and state and the establishment of information links between them. These aspects can be detailed through cultural, ideological, spiritual components and so on. The information-technological component is realized through the concept of digital sovereignty and is associated with cyberspace – environment resulting from the interaction of people, software and services on the Internet using technological devices and networks connected to them, which does not exist in any physical form. But to identify the components of information sovereignty in terms of its system elements, identifying information sovereignty with information policy or in particular with information security, we consider it impractical, because the relevant elements – information resources, information processes and their subjects, etc. are components of the information sphere.


2019 ◽  
Vol 21 (2) ◽  
pp. 1676-1717 ◽  
Author(s):  
Muhammad Salek Ali ◽  
Massimo Vecchio ◽  
Miguel Pincheira ◽  
Koustabh Dolui ◽  
Fabio Antonelli ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 1113-1116 ◽  
Author(s):  
Rong N. Chang ◽  
Xiuzhen Cheng ◽  
Wei Cheng ◽  
Wonjun Lee ◽  
Yingshu Li ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 28-39
Author(s):  
Minami Yoda ◽  
Shuji Sakuraba ◽  
Yuichi Sei ◽  
Yasuyuki Tahara ◽  
Akihiko Ohsuga

Internet of Things (IoT) for smart homes enhances convenience; however, it also introduces the risk of the leakage of private data. TOP10 IoT of OWASP 2018 shows that the first vulnerability is ”Weak, easy to predict, or embedded passwords.” This problem poses a risk because a user can not fix, change, or detect a password if it is embedded in firmware because only the developer of the firmware can control an update. In this study, we propose a lightweight method to detect the hardcoded username and password in IoT devices using a static analysis called Socket Search and String Search to protect from first vulnerability from 2018 OWASP TOP 10 for the IoT device. The hardcoded login information can be obtained by comparing the user input with strcmp or strncmp. Previous studies analyzed the symbols of strcmp or strncmp to detect the hardcoded login information. However, those studies required a lot of time because of the usage of complicated algorithms such as symbolic execution. To develop a lightweight algorithm, we focus on a network function, such as the socket symbol in firmware, because the IoT device is compromised when it is invaded by someone via the Internet. We propose two methods to detect the hardcoded login information: string search and socket search. In string search, the algorithm finds a function that uses the strcmp or strncmp symbol. In socket search, the algorithm finds a function that is referenced by the socket symbol. In this experiment, we measured the ability of our proposed method by searching six firmware in the real world that has a backdoor. We ran three methods: string search, socket search, and whole search to compare the two methods. As a result, all methods found login information from five of six firmware and one unexpected password. Our method reduces the analysis time. The whole search generally takes 38 mins to complete, but our methods finish the search in 4-6 min.


Sign in / Sign up

Export Citation Format

Share Document