Automatic gait event detection in pathological gait using an auto-selection approach

2021 ◽  
Vol 90 ◽  
pp. 63-64
Author(s):  
M. Fonseca ◽  
R. Dumas ◽  
S. Armand
2014 ◽  
Vol 39 (1) ◽  
pp. 472-477 ◽  
Author(s):  
Dustin A. Bruening ◽  
Sarah Trager Ridge

2006 ◽  
Author(s):  
Jean M. Catanzaro ◽  
Matthew R. Risser ◽  
John W. Gwynne ◽  
Daniel I. Manes

2020 ◽  
Vol 39 (6) ◽  
pp. 8463-8475
Author(s):  
Palanivel Srinivasan ◽  
Manivannan Doraipandian

Rare event detections are performed using spatial domain and frequency domain-based procedures. Omnipresent surveillance camera footages are increasing exponentially due course the time. Monitoring all the events manually is an insignificant and more time-consuming process. Therefore, an automated rare event detection contrivance is required to make this process manageable. In this work, a Context-Free Grammar (CFG) is developed for detecting rare events from a video stream and Artificial Neural Network (ANN) is used to train CFG. A set of dedicated algorithms are used to perform frame split process, edge detection, background subtraction and convert the processed data into CFG. The developed CFG is converted into nodes and edges to form a graph. The graph is given to the input layer of an ANN to classify normal and rare event classes. Graph derived from CFG using input video stream is used to train ANN Further the performance of developed Artificial Neural Network Based Context-Free Grammar – Rare Event Detection (ACFG-RED) is compared with other existing techniques and performance metrics such as accuracy, precision, sensitivity, recall, average processing time and average processing power are used for performance estimation and analyzed. Better performance metrics values have been observed for the ANN-CFG model compared with other techniques. The developed model will provide a better solution in detecting rare events using video streams.


2020 ◽  
Vol 17 (5) ◽  
pp. 243-265 ◽  
Author(s):  
Jiandong Xie ◽  
Sa Xiao ◽  
Ying-Chang Liang ◽  
Li Wang ◽  
Jun Fang

2019 ◽  
Author(s):  
Sierra Bainter ◽  
Thomas Granville McCauley ◽  
Tor D Wager ◽  
Elizabeth Reynolds Losin

In this paper we address the problem of selecting important predictors from some larger set of candidate predictors. Standard techniques are limited by lack of power and high false positive rates. A Bayesian variable selection approach used widely in biostatistics, stochastic search variable selection, can be used instead to combat these issues by accounting for uncertainty in the other predictors of the model. In this paper we present Bayesian variable selection to aid researchers facing this common scenario, along with an online application (https://ssvsforpsych.shinyapps.io/ssvsforpsych/) to perform the analysis and visualize the results. Using an application to predict pain ratings, we demonstrate how this approach quickly identifies reliable predictors, even when the set of possible predictors is larger than the sample size. This technique is widely applicable to research questions that may be relatively data-rich, but with limited information or theory to guide variable selection.


2016 ◽  
Vol 21 (1) ◽  
pp. 61-80
Author(s):  
Soumaya Cherichi ◽  
Rim Faiz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document