Citrate impairs the micropore diffusion of phosphate into pure and C-coated goethite

2006 ◽  
Vol 70 (3) ◽  
pp. 595-607 ◽  
Author(s):  
Christian Mikutta ◽  
Friederike Lang ◽  
Martin Kaupenjohann
Keyword(s):  
2007 ◽  
Vol 48 (4) ◽  
pp. 503-521 ◽  
Author(s):  
P. D. Haynes ◽  
S. K. Lucas

AbstractThe diffusion equation is used to model and analyze sorption, a process used in the purification or separation of fluids. For the diffusion inside a spherical porous solid immersed in a limited-volume and well-stirred fluid, Ruthven [5], Crank [3] and, for the analogous flow of heat, Carslaw and Jaeger [2] give an eigenfunction expansion solution to the diffusion equation that provides accurate long-time solutions when only a few terms are used. However, to obtain the same accuracy for short-time solutions the number of eigenfunction terms required increases exponentially. An alternative error function solution of Carman and Haul [1] is accurate for sufficiently short times but not for long times. Although their solution is well quoted [3, 4, 6], Carman and Haul do not provide a derivation in their paper. This paper provides a full derivation of the short-time solution of Carman and Haul that uses only the first term of a negative exponential series in the Laplace domain. It is shown that the accuracy and range of the short-time result is improved by the inclusion of additional terms of the negative exponential series. An analysis of short-time and long-time resultsis presented, together with recommendations as to their use.


2021 ◽  
Author(s):  
Nicholas S. Wilkins ◽  
James A. Sawada ◽  
Arvind Rajendran

<pre><p>Barium-exchanged reduced pore zorite (Ba-RPZ) is a titanosilicate molecular sieve that is able to separate CH4 from N2 based on their relative molecular sizes. A detailed study of N2 and CH4 adsorption equilibrium and diffusion on Ba-RPZ was completed using low and high-pressure volumetry. Adsorption equilibrium data for Ba-RPZ from limiting vacuum to 1.2 bar were measured at 30, 40, and 50° C for CH4 and at 30, 50, and 70° C for N2. Constant volume uptake experiments were conducted to estimate the diffusivities of CH4 at 30, 40, and 50° C and N2 -20, -10, and 0° C. Similar experiments were carried out with zeolite 4A to validate the methods used in this study. On the one hand, the transport of N2 in Ba-RPZ was found to be controlled by diffusion in the micropores. On the other hand, the transport of CH4 in Ba-RPZ was described by a dual-resistance model, including a barrier resistance and micropore diffusional resistance. Both the barrier and micropore diffusion coefficients demonstrated concentration dependence. While the micropore diffusion constant followed Darken's relationship, the barrier resistance did not. A concentration-dependent dual-resistance diffusion model for methane was constructed and validated using experimental data across a range of pressures and temperatures. The concentration-dependent dual-resistance model was able to describe the complex diffusion behaviour methane displays as it progressed from the dual-resistance controlled region to the micropore-controlled region of the isotherm. The calculated CH4/N2 kinetic selectivity of Ba-RPZ was shown to be significantly larger than the current benchmark material for CH4/N2 separation.</p></pre>


1989 ◽  
Author(s):  
M. Perkins ◽  
J. Calo ◽  
W. Lilly
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document