flow behaviour
Recently Published Documents


TOTAL DOCUMENTS

1002
(FIVE YEARS 191)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
pp. 110385
Author(s):  
Amin Ebrahimi ◽  
Mohammad Sattari ◽  
Scholte J.L. Bremer ◽  
Martin Luckabauer ◽  
Gert-willem R.B.E. Römer ◽  
...  

Author(s):  
Elena Bezuglaya ◽  
Nikolay Lyapunov ◽  
Oleksii Lysokobylka ◽  
Oleksii Liapunov ◽  
Volodimir Klochkov ◽  
...  

The aim. Study of the interaction of surfactants with poloxamer 338 (P338) and the effect of P338 on the properties of cream bases. Materials and methods. Solutions of the surfactants and P338 as well as cream bases were under study. The average hydrodynamic diameter (Dh) and zeta potential (ζ‑potential) were determined by the light scattering intensity and electrophoretic mobility of micelles. The electron paramagnetic resonance (EPR) spectra of spin probes in micelles, solvents and bases were obtained; the type of spectrum, isotropic constant (AN), rotational correlation times (τ) and anisotropy parameter (ε) were determined. Liquids and cream bases were studied by capillary and rotational viscometry; the flow behaviour and yield stress (t0), dynamic and apparent viscosity (η) as well as the hysteresis (thixotropic) area (AH) were determined. The microstructure of the bases was examined by optical microscopy. The strength of adhesion (Sm) was assessed by the pull-off test, and the absorption of water was studied by dialysis. Results. Under the impact of P338 the hydrodynamic diameters of micelles formed by cationic, anionic and nonionic surfactants decreased as well as the absolute values of their ζ‑potential became lower, but the microviscosity of the micelle nuclei increased. There was also a change in the structure of the aggregates of surfactant with fatty alcohols; EPR spectra, which were superpositions characteristic for the lateral phase separation, converted into triplets that indicated the uniform distribution of lipophilic probes in the surfactant phase. When the content of P338 increased to 17 %, the rheological parameters of the bases increased drastically, the flow behaviour and the microstructure changed. The bases had the consistency of cream within temperature range from 25 °C to 70 °C and completely restored their apparent viscosity, which had decreased under shear stress. P338 enhances the adhesive properties of the bases. Due to their microstructure, cream bases have a lower ability to absorb water compared to a solution and gel containing 17 % and 20 % P338, respectively. Conclusions. The structure of surfactant micelles and aggregates of surfactants with fatty alcohols changed under impact of P338 due to the interaction of surfactants with P338. As a result of this interaction, at a sufficiently high concentration of P338, the microstructure and flow behaviour of bases changed, their rheological parameters, which remain high at temperatures from 25 °C to 70 °C, increased significantly, and water absorption parameters decreased. The bases with P338 were more adhesive


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3130
Author(s):  
Vojtěch Kumbár ◽  
Sylvie Ondrušíková ◽  
Daniel Trost ◽  
Adam Polcar ◽  
Šárka Nedomová

Liquid egg products are one of the basic raw materials for the food industry. Knowledge of their rheological and flow behaviour in real technical elements is absolutely necessary for the selection of suitable technological equipment for their processing. In this article, the rheological properties of liquid egg products were determined. Eggs from six different species of poultry are used: domestic hen (Gallus gallus domesticus) hybrid Hisex Brown; Japanese quail (Coturnix japonica); German carrier goose (Anser anser f. domestica); domestic ducks (Anas platyrhynchos f. domestica); domestic guinea fowl (Numida meleagris f. domestica); and domestic turkeys (Meleagris gallopavo f. domestica). Liquid egg products showed pseudoplastic behaviour in range of shear strain rates from 0.2 up to 200 s−1 and at the temperature of 18 °C. Thus, the flow curves were constructed using the Ostwald-de Waele rheological model, with respect to the pseudoplastic behaviour of liquid egg products. According to the values of the coefficients of determination (R2), the sum of squared estimate of errors (SSE) and the root mean square error (RMSE), this model was appropriately chosen. Using the consistency coefficient K, the flow index n and the adjusted equations for the flow rate of technical and biological fluids in standard pipelines, the 3D velocity profiles of liquid egg products were successfully modelled. The values of the Reynolds number of the individual liquid egg products were calculated, and the type of flow was also determined. A turbulent flow has been detected for some liquid egg products.


2021 ◽  
Author(s):  
Abdurrezagh Awid ◽  
Chengjun Guo ◽  
Sebastian Geiger

Abstract Inflow Control Device (ICD) completions can improve well performance by adjusting the inflow profile along the well and reducing the influx of unwanted fluids. The ultimate aim of using ICD completions is to provide maximum oil recovery and/or Net Present Value (NPV) over the life of the field. Proactive ICD optimisation studies use complex reservoir models and high-dimensional nonlinear objective functions to find the optimum ICD configurations over the life of the field. These complex models are generated from fine scale detailed geological models to accurately capture fluid flow behaviour in the reservoir. Although these high-resolution geological models can provide better performance predictions, their simulation runtimes can be computationally expensive and time consuming for performing proactive ICD optimisation studies that often require thousands of simulation runs. We propose a new workflow where we use upscaled and locally refined models coupled with parallelised global search optimisation techniques to improve the simulation efficiency when performing ICD optimisation and decision-making studies. Our approach preserves the flow behaviour in the reservoir and maintains the interaction between the reservoir and the well in the near wellbore region. Moreover, when coupled with parallel optimisation techniques, the simulation time is significantly reduced. We present an in-house code that couples global search optimisation algorithms (Genetic Algorithm and Surrogate Algorithm) with a commercial reservoir simulator to drive the ICD configurations. We evaluate the NPV as the objective function to determine the optimum ICD configurations. We apply and benchmark our approach to two different reservoir models to compare and analyse its efficiency and the optimisation results. Our analysis shows that our proposed approach reduces the run time by more than 80% when using the upscaled models and the parallel optimisation techniques. These results were based on a standard dual-core parallel desktop configuration. Additional results also showed further reduction in run time is possible when employing more processors. Additionally, when testing different ICD completion strategies (ICDs in producers only, ICDs in injectors only, and ICDs in both producers and injectors), the NPV can be increased by 9.6% for the optimised ICD completions. The novelty of our work is rooted in the much-improved simulation efficiency and better performance predictions that supports ICD optimisation and decision-making studies during field development planning to maximize profit and minimize risk over the life of the field.


Author(s):  
Nurul Zuhairah Mahmud Zuhudi ◽  
Firdaus Aqil Mohd Fadzil ◽  
Muzafar Zulkifli ◽  
Ahmad Naim Ahmad Yahaya ◽  
Nurhayati Mohd Nur ◽  
...  

Rheological behaviour is an important factor affecting the flow behaviour of a fluid and many aspects related to this, mainly in the manufacturing process of fiber reinforced composites, either for Newtonian fluids or non-Newtonian fluids. During impregnation process, the viscosity changes with temperatures and their strain rate, has influenced the resin flow behaviour during curing process. In this paper, a review on the rheological studies of fiber reinforced composites for both, synthetic and natural based fibers, respectively, are presented. In addition to that, this review paper highlighting a few research studies conducted in literature on the main factors that affecting the rheological quality and performance of the composites. The aims of this review, mainly to capture the trend ranging from the recent five years back and summarize the various studies via experimental, theoretical or modelling works. Furthermore, also aiming to provide an ideal baseline information in the selection of the methods regarding rheological study to ensure better quality of pre-preg product and fibre reinforced composites can be produced in the author’s future work.


Author(s):  
Izuan Amin Ishak ◽  
Nurshafinaz Maruai ◽  
Fadhilah Mohd Sakri ◽  
Rahmah Mahmudin ◽  
Nor Afzanizam Samiran ◽  
...  

In this article, a numerical approach is applied to study the flow regimes surround a generic train model travelling on different bridge configurations under the influence of crosswind. The bridge is varies based on the different geometry of the bridge girder. The crosswind flow angle (Ψ) is varied from 0° to 90°. The incompressible flow around the train was resolved by utilizing the Reynolds-averaged Navier-Stokes (RANS) equations combined with the SST k-ω turbulence model. The Reynolds number used, based on the height of the train and the freestream velocity, is 3.7 × 105. In the results, it was found that variations of the crosswind flow angles produced different flow regimes. Two unique flow regimes appear, representing (i) slender body flow behaviour at a smaller range of Ψ (i.e. Ψ ≤ 45°) and (ii) bluff body flow behaviour at a higher range of Ψ (i.e. Ψ ≥ 60°). As the geometries of the bridge girder were varied, the bridge with the wedge girder showed the worst aerodynamic properties with both important aerodynamic loads (i.e. side force and rolling moment), followed by the triangular girder and the rectangular girder. This was due to the flow separation on the windward side and flow structure formation on the leeward side, both of which are majorly influenced by the flow that moved from the top and below of the bridge structures.


2021 ◽  
pp. 1-11
Author(s):  
Zahra Sangarimotlagh ◽  
Mohamed Amin Karimi Asl ◽  
Amir Momeni ◽  
M. Soltanalinejad

2021 ◽  
pp. 115-120
Author(s):  
S. Sureka ◽  
C. Kavinkumar ◽  
Rakesh J. Pillai

Sign in / Sign up

Export Citation Format

Share Document