fissured rock
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Gningnéri Souleymane Ouattara ◽  
Brou Dibi ◽  
Arthur Brice Konan- Waidhet ◽  
Jules Mangoua Oi Mangoua ◽  
Bamory Kamagate

Water is a vital resource for all populations. However, there are warning signs that the water from the Lobo River used by SODECI to supply drinking water to the population is declining in quantity during the dry season and its quality is becoming poor due to climate variability and anthropogenic activities. However, the river is able to maintain a certain flow, probably with the contribution of groundwater. It is therefore a question of whether there is really a connection between surface water and groundwater. The aim of this study is to characterize the groundwater-river interactions based on the physico-chemical parameters of the Lobo watershed in Nibéhibé. The approach adopted is a coupled statistical-geochemical approach applied on data from two sampling campaigns (dry and rainy season). This coupled approach consisted, on the one hand, in understanding the chemical specificities within the water classes using the piper diagram and, on the other hand, in classifying the waters according to their physico-chemical similarity and highlighting the phenomena at the origin of the water mineralization using the Kohonen self-organized map (SOM). The results obtained from the piper diagram show that in both the wet and dry seasons, the chemical signature of the waters remains controlled by two main hydrochemical facies: the chlorinated calcium-magnesium nitrate hydrofacies and the bicarbonate calcium-magnesium hydrofacies. Kohonen's self-organized map has established that the mineralization of groundwater, under natural conditions, comes from the nature of the rocks crossed during infiltration and from the contact time between water and minerals. This work provides managers with decision-support tools for planning and searching for groundwater in support of surface water to reinforce the drinking water supply of the populations in this watershed. 


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Yan Wang ◽  
Yongjun Zhang ◽  
Zhen Zhu ◽  
Mingqing Du ◽  
Yi Qi

Focusing on the special stratum conditions of upper-soft and lower-hard fissured rock strata, this paper conducts quantitative research and analysis on the factors influencing the ground settlement caused by shield tunnel construction considering the coupled hydromechanical properties and presents a corresponding numerical simulation-artificial neural network-Bayesian network- (NS-ANN-BN-) based method. In this method, with a subway shield tunnel as the engineering context, three numerical models are established, in which the shield tunnel is located in soft strata, the shield tunnel is located in semisoft and semihard strata, or the shield tunnel is located in hard strata. According to the numerical simulation (NS) calculations, the ground settlement values under the three types of strata are 38.96 mm, 10.42 mm, and 3.13 mm, respectively. A radial basis function artificial neural network (RBF-ANN) is used to establish the nonlinear mapping relationship between the stratum parameters and the ground settlement, and the training samples and test samples are generated through NS to train the RBF-ANN. After the training is completed, the accuracy of the neural network meets the requirements. The elastic moduli of coarse sand~gravel sand k3 and moderately weathered rhyolite k4 and the cohesion of moderately weathered rhyolite c4 are selected as the key parameters. A large number of training cases are generated through the RBF-ANN, and the Bayesian network (BN) prior probability is calculated by self-learning. A BN model of ground settlement for shield tunnel construction in the upper-soft and lower-hard fissured rock strata is established. The BN back analysis method is used to quantitatively analyze the influencing factors of the ground settlement. The results show that when the tunnel is located in soft strata, the surface settlement is mainly affected by parameter k3. When the ground settlement increases considerably, the three parameters all have a strong influence. When the tunnel is located in semisoft and semihard strata, the influence of the three parameters on the ground settlement is weak. When the tunnel is located in hard strata, the ground settlement is mainly affected by parameter k4. When the ground settlement greatly increases, parameters k3 and c4 have less influence. When the tunnel is located in strata with different soft-hard ratios, the ground settlement is mainly affected by the elastic moduli of coarse sand~gravel sand and moderately weathered rhyolite. This method can provide a reference for the ground settlement analysis of shield tunnel construction in areas with similar fissured rock strata.


Author(s):  
Xiaoming Lou ◽  
Mingwu Sun ◽  
Jin Yu

AbstractThe fissures are ubiquitous in deep rock masses, and they are prone to instability and failure under dynamic loads. In order to study the propagation attenuation of dynamic stress waves in rock mass with different number of fractures under confining pressure, nonlinear theoretical analysis, indoor model test and numerical simulation are used respectively. The theoretical derivation is based on displacement discontinuity method and nonlinear fissure mechanics model named BB model. Using ABAQUS software to establish a numerical model to verify theoretical accuracy, and indoor model tests were carried out too. The research shows that the stress attenuation coefficient decreases with the increase of the number of fissures. The numerical simulation results and experimental results are basically consistent with the theoretical values, which verifies the rationality of the propagation equation.


2020 ◽  
Author(s):  
Hui Yu ◽  
Shaowei Liu ◽  
Housheng Jia ◽  
Huaichang Zheng ◽  
Zhihe Liu

Abstract Geostress environment and fracture distribution both exert important influences on the mechanical properties and failure modes of fissured rock masses. Laboratory test results are presented here to simulate particle flow code (PFC) in externally double-fissured sandstone samples. Mechanical responses of confining pressure and rock bridge angle on stress-strain curves as well as macroscopic damage and fracture propagation in these samples were studied in order to elucidate energy dissipation mechanisms. The results of this analysis show that fissured sandstone peak strength and elastic modulus as well as peak axial and lateral strain increase significantly as rock bridge angle decreases while peak strength increases slightly in concert with confining pressure. Rock bridge angle exerts an important influence on macro fracturing patterns; when β = 0°, wing cracks from two pre-existing external fissures propagate in opposite directions, but when β = 60°, the inner tips of two external fissures become directly connected. The evolution of specimen fracturing passes through four main stages, elastic compression deformation, stable crack development, unstable crack development, and post-peak accelerated crack development. Internal contact forces reach maximum values at the peak stress point, while cracks are mainly tensile and shear examples are mostly distributed at orientations between 80° and 100°. Shear cracks are mainly generated along the direction of main stress, σ 1 , while pre-peak dissipated energy is small, and increases rapidly at the post-peak. As rock bridge angle decreases, peak strain and boundary energies both increase significantly. Data show that energy and rock bridge angle are approximately linearly positively correlated.


Author(s):  
A Bosman ◽  
G R Basson

The erosive power of a free-falling high-velocity water jet, flowing from a dam spillway, could create a scour hole downstream of the dam, endangering the foundation of the dam. Despite extensive research since the 1950s, there is presently no universally agreed method to predict accurately the equilibrium scour depth caused by plunging jets at dams. These formulae yield a large range of equilibrium scour dimensions. The hydrodynamics of plunging jets and the subsequent scour of a rectangular, horizontal and vertical fissured rock bed were investigated in this study by means of a physical model. Equilibrium scour hole geometries for different fissured dimensions (simulated with rectangular concrete blocks tightly prepacked in a regular rectangular matrix), for a range of flow rates, plunge pool depths, and dam height scenarios were experimentally established with 31 model tests. From the results, non-dimensional formulae for the scour hole geometry were developed using multi-linear regression analysis. The scour depth results from this study were compared to various analytical methods found in literature. The equilibrium scour hole depth established in this study best agrees with that predicted by the Critical Pressure method.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter Trontelj ◽  
Špela Borko ◽  
Teo Delić

Abstract Terrestrial life typically does not occur at depths greater than a few meters. Notable exceptions are massifs of fissured rock with caves and hollow spaces reaching depths of two kilometres and more. Recent biological discoveries from extremely deep caves have been reported as sensations analogous to wondrous deep sea creatures. However, the existence of unique deep terrestrial communities is questionable when caves are understood as integral parts of a bedrock fissure network (BFN) interconnecting all parts of a massif horizontally and vertically. We tested these two opposing hypotheses – unique deep cave fauna vs. BFN – by sampling subterranean communities within the 3D matrix of a typical karst massif. There was no distinction between deep core and shallow upper zone communities. Beta diversity patterns analysed against null models of random distribution were generally congruent with the BFN hypothesis, but suggested gravity-assisted concentration of fauna in deep caves and temperature-dependent horizontal distribution. We propose that the idea of a unique deep terrestrial fauna akin to deep oceanic life is unsupported by data and unwarranted by ecological considerations. Instead, the BFN hypothesis and local ecological and structural factors sufficiently explain the distribution of subterranean terrestrial life even in the deepest karst massifs.


Sign in / Sign up

Export Citation Format

Share Document