The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg

2014 ◽  
Vol 142 ◽  
pp. 458-481 ◽  
Author(s):  
Matthew S. Fantle ◽  
John Higgins
2009 ◽  
Vol 46 (6) ◽  
pp. 403-423 ◽  
Author(s):  
Karem Azmy ◽  
Denis Lavoie

The Lower Ordovician St. George Group of western Newfoundland consists mainly of shallow-marine-platform carbonates (∼500 m thick). It is formed, from bottom to top, of the Watts Bight, Boat Harbour, Catoche, and Aguathuna formations. The top boundary of the group is marked by the regional St. George Unconformity. Outcrops and a few cores from western Newfoundland were sampled at high resolution and the extracted micritic materials were investigated for their petrographic and geochemical criteria to evaluate their degree of preservation. The δ13C and δ18O values of well-preserved micrite microsamples range from –4.2‰ to 0‰ (VPDB) and from –11.3‰ to –2.9‰ (VPDB), respectively. The δ13Ccarb profile of the St. George Group carbonates reveals several negative shifts, which vary between ∼2‰ and 3‰ and are generally associated with unconformities–disconformities or thin shale interbeds, thus reflecting the effect of or link with significant sea-level changes. The St. George Unconformity is associated with a negative δ13Ccarb shift (∼2‰) on the profile and correlated with major lowstand (around the end of Arenig) on the local sea-level reconstruction and also on those from the Baltic region and central Australia, thus suggesting that the St. George Group Unconformity might have likely had an eustatic component that contributed to the development–enhancement of the paleomargin. Other similar δ13Ccarb shifts have been recorded on the St. George profile, but it is hard to evaluate their global extension due to the low resolution of the documented global Lower Ordovician (Tremadoc – middle Arenig) δ13Ccarb profile.


2019 ◽  
Vol 116 (38) ◽  
pp. 18874-18879 ◽  
Author(s):  
Paul F. Hoffman ◽  
Kelsey G. Lamothe

Carbonate sediments of nonglacial Cryogenian (659 to 649 Ma) and early Ediacaran (635 to 590 Ma) age exhibit large positive and negative δ13Ccarb excursions in a shallow-water marine platform in northern Namibia. The same excursions are recorded in fringing deep-sea fans and in carbonate platforms on other paleocontinents. However, coeval carbonates in the upper foreslope of the Namibian platform, and to a lesser extent in the outermost platform, have relatively uniform δ13Ccarb compositions compatible with dissolved inorganic carbon (DIC) in the modern ocean. We attribute the uniform values to fluid-buffered diagenesis that occurred where seawater invaded the sediment in response to geothermal porewater convection. This attribution, which is testable with paired Ca and Mg isotopes, implies that large δ13Ccarb excursions observed in Neoproterozoic platforms, while sedimentary in origin, do not reflect the composition of ancient open-ocean DIC.


2019 ◽  
Vol 46 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Ana Sevillano ◽  
Michel Septfontaine ◽  
Idoia Rosales ◽  
Antonio Barnolas ◽  
Beatriz Bádenas ◽  
...  

2016 ◽  
Author(s):  
Jitao Chen ◽  
◽  
Isabel P. Montanez ◽  
Isabel P. Montanez ◽  
Xiangdong Wang ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 299
Author(s):  
Helmut Cölfen ◽  
Erika Griesshaber ◽  
Wolfgang W. Schmahl

Triggered by geochemical cycles, large-scale terrestrial processes and evolution, a tremendous biodiversity evolved over the geological record and produced proto- and metazoa with biomineralized hard tissue, characterized by unique structural designs and exquisite performance [...]


2016 ◽  
Vol 13 (3) ◽  
pp. 434-449 ◽  
Author(s):  
Xiao-Liang Bai ◽  
Shao-Nan Zhang ◽  
Qing-Yu Huang ◽  
Xiao-Qi Ding ◽  
Si-Yang Zhang

Sign in / Sign up

Export Citation Format

Share Document