scholarly journals Experimental constraints on Li isotope fractionation during clay formation

2019 ◽  
Vol 250 ◽  
pp. 219-237 ◽  
Author(s):  
Ruth S. Hindshaw ◽  
Rebecca Tosca ◽  
Thomas L. Goût ◽  
Ian Farnan ◽  
Nicholas J. Tosca ◽  
...  
2021 ◽  
Vol 292 ◽  
pp. 333-347
Author(s):  
Xu (Yvon) Zhang ◽  
Giuseppe D. Saldi ◽  
Jacques Schott ◽  
Julien Bouchez ◽  
Marie Kuessner ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 635-646 ◽  
Author(s):  
Holly L. Taylor ◽  
Isaac J. Kell Duivestein ◽  
Juraj Farkas ◽  
Martin Dietzel ◽  
Anthony Dosseto

Abstract. Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth's climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca–Mg carbonates and solution, and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca–Mg carbonates at high temperatures (150 to 220 ∘C) and measured the Li isotope composition (δ7Li) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained: 103ln⁡αprec-sol=-(2.56±0.27)106(1)/T2+(5.8±1.3) Competitive nucleation and growth between dolomite and magnesite were observed during the experiments; however, there was no notable effect of their relative proportion on the apparent Li isotope fractionation. We found that Li isotope fractionation between the precipitated solid and solution is higher for Ca–Mg carbonates than for Ca carbonates. If the temperature of a precipitating solution is known or can be estimated independently, the above equation could be used in conjunction with the Li isotope composition of dolostones to derive the composition of the solution and hence make inferences about the past Li cycle. In addition, we also conducted leaching experiments on a Neoproterozoic dolostone and a Holocene coral. Results show that leaching with 0.05 M hydrochloric acid (HCl) or 0.5 % acetic acid (HAc) at room temperature for 60 min releases Li from the carbonate fraction without a significant contribution of Li from the siliciclastic detrital component. These experimental and analytical developments provide a basis for the use of Li isotopes in dolostones as a palaeo-environmental proxy, which will contribute to further advance our understanding of the evolution of Earth's surface environments.


Elements ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 247-252
Author(s):  
Horst R. Marschall ◽  
Ming Tang

The field of high-temperature Li isotope geochemistry has been rattled by major paradigm changes. The idea that Li isotopes could be used to trace the sources of fluids, rocks, and magmas had to be largely abandoned, because Li diffusion causes its isotopes to fractionate at metamorphic and magmatic temperatures. However, diffusive fractionation of Li isotopes can be used to determine timescales of geologic processes using arrested diffusion profiles. High diffusivity and strong kinetic isotope fractionation favors Li isotopes as a tool to constrain the durations of fast processes in the crust and mantle, where other geochronometers fall short. Time may be the parameter that high-temperature Li isotope studies will be able to shed much light on.


2020 ◽  
Author(s):  
David Wilson ◽  
Philip Pogge von Strandmann ◽  
Gary Tarbuck ◽  
Jo White ◽  
Tim Atkinson ◽  
...  

<p>Chemical weathering is a key process that controls Earth’s geochemical cycles and global climate, yet at present the climate-weathering feedback is poorly understood. Lithium (Li) isotopes are sensitive to silicate weathering processes [1] and can be applied in a range of settings to improve our understanding of weathering mechanisms and timescales, and hence to quantify the role of weathering in the global carbon cycle. While marine carbonates [2] and speleothems [3] are suitable for recording changes over million year and thousand year timescales, respectively, it is equally important to assess how weathering operates over seasonal [4] and shorter [5] timescales.</p><p>In order to explore seasonal variability in a natural system, we analysed Li isotopes and major/trace elements in a time series of cave drip-water samples from Ease Gill and White Scar caves (Yorkshire Dales, U.K.). Since the drip-waters are sourced from the overlying soil porewaters, these measurements provide a record of the evolving weathering fluid chemistry at approximately monthly intervals. Our data reveal striking temporal variations in ∂<sup>7</sup>Li of 4 to 8 permil, hinting at rapid changes in weathering processes over monthly to seasonal timescales. We assess the sources of Li using isotope measurements on local rocks and soils, which enables a first order quantification of the temporal changes in Li removal by clay formation. Comparison to records of temperature, precipitation, drip rates, and drip-water chemistry allows the local controls on weathering to be assessed and indicates that a dominant control is exerted by the fluid residence time.</p><p>These data are further complemented by batch reactor experiments, which were conducted to replicate rock weathering over timescales of hours to weeks. In combination, the time series and experiments contribute to a better understanding of weathering changes over short timescales and their influence on Li isotopes. In addition, results from the drip-waters provide key ground-truthing for interpreting our ongoing Li isotope measurements on speleothems, which will provide new records of weathering changes over longer timescales in response to regional climate forcing.</p><p>[1] Pogge von Strandmann, P.A.E., Frings, P.J., Murphy, M.J. (2017) Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. GCA 198, 17-31.</p><p>[2] Misra, S. & Froelich, P.N. (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818-823.</p><p>[3] Pogge von Strandmann, P.A.E., Vaks, A., Bar-Matthews, M., Ayalon, A., Jacob, E., Henderson, G.M. (2017) Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles. EPSL 469, 64-74.</p><p>[4] Liu, X.-M., Wanner, C., Rudnick, R.L., McDonough, W.F. (2015) Processes controlling δ<sup>7</sup>Li in rivers illuminated by study of streams and groundwaters draining basalts. EPSL 409, 212-224.</p><p>[5] Pogge von Strandmann, P.A.E., Fraser, W.T., Hammond, S.J., Tarbuck, G., Wood, I.G., Oelkers, E.H., Murphy, M.J. (2019) Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology 517, 34-43.</p>


2010 ◽  
Vol 74 (2) ◽  
pp. 241-255 ◽  
Author(s):  
B. M. Shabaga ◽  
M. Fayek ◽  
F. C. Hawthorne

AbstractThe Li and B isotopic compositions of gem-quality Cu-bearing tourmalines were used (1) to distinguish among Paraiba tourmalines from Brazil and Cu-bearing tourmalines from Nigeria and Mozambique; and (2) to identify the likely source of Li and B for these gem-quality tourmalines. The δ11B values of tourmaline from Paraiba, Brazil, range from –42.4‰ to –32.9‰, whereas the δ11B values of Cu-bearing tourmaline from Nigeria and Mozambique range from –30.5‰ to –22.7‰ and –20.8‰ to –19.1‰ respectively. Tourmalines from each locality have relatively homogeneous δ11B values and display no overlap. There is slight overlap between δ7Li values of Paraiba tourmaline (+24.5‰ to +32.9‰) and Cu-bearing tourmaline from Nigeria (+32.4‰ to +35.4‰), and δ7Li values of Cu-bearing tourmaline from Nigeria and Mozambique (+31.5‰ to +46.8‰). Nevertheless, Cu-bearing tourmalines from each locality can be fingerprinted using a combination of their δ11B and δ7Li values. The very small δ11B values are consistent with a non-marine evaporite source, and are among the smallest reported for magmatic systems, expanding the global range of B isotopicc omposition for tourmaline by 12‰. The corresponding large δ7Li values are among the largest reported, although they are less diagnostic of the source of the Li. The large δ7Li values in conjunction with the small δ11B values suggest a non-marine evaporite or brine as a source for Li and B, either as constituent(s) of the magma source region or, by assimilation during magma ascent. The large range in δ11B and δ7Li values suggests that B and Li isotope fractionation occurred during magmatic degassing and late-stage magmatic-hydrothermal evolution of the granite-pegmatite system.


2008 ◽  
Vol 72 (3) ◽  
pp. 780-792 ◽  
Author(s):  
N. Vigier ◽  
A. Decarreau ◽  
R. Millot ◽  
J. Carignan ◽  
S. Petit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document