li isotope
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Author(s):  
WILLIS JONES ◽  
JASON DARVIN ◽  
KIMBERLY FESSLER
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Toshihiro Yoshimura ◽  
Daisuke Araoka ◽  
Hodaka Kawahata ◽  
H. M. Zakir Hossain ◽  
Naohiko Ohkouchi

The silicate weathering of continental rocks plays a vital role in determining ocean chemistry and global climate. Spatiotemporal variations in the Li isotope ratio (δ7Li) of terrestrial waters can be used to identify regimes of current and past weathering processes. Here we examine: 1) monthly dissolved δ7Li variation in the Ganges River’s lower reaches; and 2) the spatiotemporal variation of river water of the Brahmaputra, Meghna rivers, and groundwater in Bangladesh. From the beginning to maximum flood discharges of the rainy season (i.e., from June to September), Li concentrations and δ7Li in the Ganges River show remarkable changes, with a large influence from Himalayan sources. However, most Li discharge across the rainy season is at steady-state and strongly influenced by the secondary mineral formation in the low-altitude floodplain. Secondary mineral formation strongly influences the Meghna River’s Li isotopic composition along with fractionation lines similar to the Ganges River. A geothermal input is an additional Li source for the Brahmaputra River. For groundwater samples shallower than ∼60 m depth, both δ7Li and Li/Na are highly scattered regardless of the sampling region, suggesting the variable extent of fractionation. For deep groundwater (70–310 m) with a longer residence time (3,000 to 20,000 years), the lower δ7Li values indicate more congruent weathering. These results suggest that Li isotope fractionation in rivers and groundwater depends on the timescale of water-mineral interaction, which plays an essential role in determining the isotopic signature of terrestrial Li inputs to the ocean.


Author(s):  
M. V. Korzhik

Inorganic scintillation glasses form a domain of rapidly evolving detector materials used to measure various types of ionizing radiation. The most widespread are lithium-silicate glasses enriched with the 6Li isotope, which are used to register thermal neutrons. At the same time, due to the specificity of the energy dependence of the neutron cross-section of light nuclei, such materials are of little use for the evaluation of epithermal and more highly energetic neutrons. The use of rare earth elements in the composition of glasses makes it possible to increase the sensitivity to neutrons. In the BaO–Gd2O3–SiO2 system, doped with Ce ions, a scintillation glass with a yield of at least 2500 photons / MeV was created for the first time, which permits to create inexpensive detector elements of a significant volume for registering neutrons. It has been shown that a detector based on BaO–Gd2O3–SiO2 glass has satisfactory properties when detecting neutrons in a wide spectrum of their energies.


2021 ◽  
pp. SP513-2021-60
Author(s):  
Lukáš Krmíček ◽  
Tomáš Magna ◽  
Ashutosh Pandey ◽  
N. V. Chalapathi Rao ◽  
Jindřich Kynický

AbstractOur pilot study reveals potential fingerprints of Li isotopes recorded in the Mesoproterozoic (∼1.4-1.1 Ga) kimberlites, lamproites and lamprophyres from the Eastern Dharwar Craton and Paleocene (62 Ma) orangeite from the Bastar Craton in India. The new data are interpreted in the context of available Li isotope composition of lamproitic to lamprophyric rocks occurring in Variscan (Bohemian Massif) and Alpine-Himalayan (SW Tibet) orogenic belts formed in response to Gondwana-Pangea amalgamation and break-up. As a result of supercontinents development, kimberlites from the Eastern Dharwar Craton and ‘orangeite’ from the Bastar Craton show clear presence of a component with a heavy Li isotope signature (δ7Li up to 9.7‰) similar to an ancient altered oceanic crust, whereas the Eastern Dharwar Craton lamproites (2.3-6.3‰) and lamprophyres (3.3-6.7‰) show Li isotope signatures indicative of a dominant contribution from heterogeneous lithospheric mantle. Variscan lamprophyric to lamproitic rocks and post-collisional mantle-derived (ultra)potassic volcanic rocks from SW Tibet, i.e., rocks from the orogenic belts outside the cratonic areas, are characterized by a clear Li isotope shift towards isotopically lighter component (δ7Li as low as -9.5‰) comparable with the involvement of an evolved continental crust and high-pressure metamorphic rocks in their orogenic mantle source. Such components with isotopically light Li are strikingly missing in the source of cratonic kimberlites, lamproites and lamprophyres.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5495097


2021 ◽  
Vol 292 ◽  
pp. 333-347
Author(s):  
Xu (Yvon) Zhang ◽  
Giuseppe D. Saldi ◽  
Jacques Schott ◽  
Julien Bouchez ◽  
Marie Kuessner ◽  
...  

2021 ◽  
Vol 55 (4) ◽  
pp. 241-250
Author(s):  
M. Tanimizu ◽  
N. Sugimoto ◽  
T. Hosono ◽  
C. Kuribayashi ◽  
T. Morimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document