scholarly journals Cell cycle dynamics and developmental dynamics of the 3D genome: toward linking the two timescales

2022 ◽  
Vol 73 ◽  
pp. 101898
Author(s):  
Hisashi Miura ◽  
Ichiro Hiratani
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corinne L. A. Fairchild ◽  
Simranjeet K. Cheema ◽  
Joanna Wong ◽  
Keiko Hino ◽  
Sergi Simó ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2012 ◽  
Vol 365 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Dennis A. Ridenour ◽  
Mary Cathleen McKinney ◽  
Caleb M. Bailey ◽  
Paul M. Kulesa

2009 ◽  
Vol 5 (3-4) ◽  
pp. 57-67 ◽  
Author(s):  
Konstantina Psachoulia ◽  
Francoise Jamen ◽  
Kaylene M. Young ◽  
William D. Richardson

Oligodendrocyte precursors (OLPs or ‘NG2 cells’) are abundant in the adult mouse brain, where they continue to proliferate and generate new myelinating oligodendrocytes. By cumulative BrdU labelling, we estimated the cell cycle timeTCand the proportion of NG2 cells that is actively cycling (the growth fraction) at ~ postnatal day 6 (P6), P60, P240 and P540. In the corpus callosum,TCincreased from <2 days at P6 to ~9 days at P60 to ~70 days at P240 and P540. In the cortex,TCincreased from ~2 days to >150 days over the same period. The growth fraction remained relatively invariant at ~50% in both cortex and corpus callosum – that is, similar numbers of mitotically active and inactive NG2 cells co-exist at all ages. Our data imply that a stable population of quiescent NG2 cells appears before the end of the first postnatal week and persists throughout life. The mitotically active population acts as a source of new oligodendrocytes during adulthood, while the biological significance of the quiescent population remains to be determined. We found that the mitotic status of adult NG2 cells is unrelated to their developmental site of origin in the ventral or dorsal telencephalon. We also report that new oligodendrocytes continue to be formed at a slow rate from NG2 cells even after P240 (8 months of age).


Cell Cycle ◽  
2017 ◽  
Vol 16 (19) ◽  
pp. 1835-1847 ◽  
Author(s):  
Joan P. Zape ◽  
Carlos O. Lizama ◽  
Kelly M. Cautivo ◽  
Ann C. Zovein

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Jan Wisniewski ◽  
Bassam Hajj ◽  
Jiji Chen ◽  
Gaku Mizuguchi ◽  
Hua Xiao ◽  
...  

The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.


2016 ◽  
Vol 130 (2) ◽  
pp. 512-520 ◽  
Author(s):  
Siang-Boon Koh ◽  
Patrice Mascalchi ◽  
Esther Rodriguez ◽  
Yao Lin ◽  
Duncan I. Jodrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document