scholarly journals Analyzing land use intensity changes within and outside protected areas using ESA CCI-LC datasets

2019 ◽  
Vol 20 ◽  
pp. e00789
Author(s):  
Lei Jiang ◽  
Le Yu
2012 ◽  
Vol 26 (5) ◽  
pp. 883-893 ◽  
Author(s):  
VAN BUTSIC ◽  
VOLKER C. RADELOFF ◽  
TOBIAS KUEMMERLE ◽  
ANNA M. PIDGEON

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Wenmin Hu ◽  
Weijun Zhou ◽  
Hongshi He

Land use and its environmental effects can be quantitatively expressed with land-use intensity. In this study, a land-use intensity metric was improved using a geographic mapping method. The relationships between observed rapid changes in land use and temperature in the Dongting Lake area from 2001 to 2010 were examined. The results revealed the following features: (1) The temperature increased when the land-use intensity increased via a hierarchical transition owing to grass and forest land reductions of 26.25% and 11.74%, respectively; built-up land increased by 48.45%. (2) The temperature increase was driven more by the external environment than by land-use intensity changes. Human activities produced larger effects in the western region than in the eastern or central region of the study area, according to the observed variations in the centres of gravity for temperature and land-use intensity. (3) The temperature response to land-use intensity changes was more sensitive in low-altitude areas than in high-altitude areas; the response presented a north-south gradient, possibly due to socioeconomic and urbanisation differences.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Xiaolong Jin ◽  
Penghui Jiang ◽  
Haoyang Du ◽  
Dengshuai Chen ◽  
Manchun Li

2016 ◽  
pp. rtw062 ◽  
Author(s):  
Valentin H. Klaus ◽  
Deborah Schäfer ◽  
Till Kleinebecker ◽  
Markus Fischer ◽  
Daniel Prati ◽  
...  

2021 ◽  
Author(s):  
Anna Kirschbaum ◽  
Oliver Bossdorf ◽  
J F Scheepens

Abstract Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing, mowing and fertilization. Many previous studies showed that this can cause evolutionary changes in mean trait values, but little is known about the evolution of phenotypic plasticity in response to land use. In this study, we aimed to elucidate the relationships between phenotypic plasticity – specifically, regrowth ability after biomass removal – and the intensity of grassland management and levels of temporal variation therein. Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal. We used three common plant species from temperate European grasslands, with seed material from 58 – 68 populations along gradients of land-use intensity, ranging from extensive (only light grazing) to very intensive management (up to four cuts per year). Important findings In two out of three species, we found significant population differentiation in regrowth ability after clipping. While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin, we found a relationship with its temporal variation in P. lanceolata, where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping. Therefore, while mean grazing and mowing intensity may not select for regrowth ability, the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.


2014 ◽  
Vol 1 (2) ◽  
pp. 140133 ◽  
Author(s):  
Kerstin R. Wiesner ◽  
Jan Christian Habel ◽  
Martin M. Gossner ◽  
Hugh D. Loxdale ◽  
Günter Köhler ◽  
...  

Land-use intensity (LUI) is assumed to impact the genetic structure of organisms. While effects of landscape structure on the genetics of local populations have frequently been analysed, potential effects of variation in LUI on the genetic diversity of local populations have mostly been neglected. In this study, we used six polymorphic microsatellites to analyse the genetic effects of variation in land use in the highly abundant grasshopper Chorthippus parallelus . We sampled a total of 610 individuals at 22 heterogeneous grassland sites in the Hainich-Dün region of Central Germany. For each of these grassland sites we assessed habitat size, LUI (combined index of mowing, grazing and fertilization), and the proportion of grassland adjoining the sampling site and the landscape heterogeneity (the latter two factors within a 500 m buffer zone surrounding each focal site). We found only marginal genetic differentiation among all local populations and no correlation between geographical and genetic distance. Habitat size, LUI and landscape characteristics had only weak effects on most of the parameters of genetic diversity of C. parallelus ; only expected heterozygosity and the grasshopper abundances were affected by interacting effects of LUI, habitat size and landscape characteristics. The lack of any strong relationships between LUI, abundance and the genetic structure might be due to large local populations of the species in the landscape, counteracting local differentiation and potential genetic drift effects.


2012 ◽  
Vol 28 (4) ◽  
pp. 699-707 ◽  
Author(s):  
Xiuzhen Li ◽  
Yongguang Sun ◽  
Ülo Mander ◽  
Yanlong He

2008 ◽  
Vol 100 (1-2) ◽  
pp. 83-88 ◽  
Author(s):  
R SMITH ◽  
C MCSWINEY ◽  
A GRANDY ◽  
P SUWANWAREE ◽  
R SNIDER ◽  
...  

2018 ◽  
Vol 24 (5) ◽  
pp. 2021-2034 ◽  
Author(s):  
Andreas Stampfli ◽  
Juliette M. G. Bloor ◽  
Markus Fischer ◽  
Michaela Zeiter

Sign in / Sign up

Export Citation Format

Share Document