scholarly journals Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species Chorthippus parallelus

2014 ◽  
Vol 1 (2) ◽  
pp. 140133 ◽  
Author(s):  
Kerstin R. Wiesner ◽  
Jan Christian Habel ◽  
Martin M. Gossner ◽  
Hugh D. Loxdale ◽  
Günter Köhler ◽  
...  

Land-use intensity (LUI) is assumed to impact the genetic structure of organisms. While effects of landscape structure on the genetics of local populations have frequently been analysed, potential effects of variation in LUI on the genetic diversity of local populations have mostly been neglected. In this study, we used six polymorphic microsatellites to analyse the genetic effects of variation in land use in the highly abundant grasshopper Chorthippus parallelus . We sampled a total of 610 individuals at 22 heterogeneous grassland sites in the Hainich-Dün region of Central Germany. For each of these grassland sites we assessed habitat size, LUI (combined index of mowing, grazing and fertilization), and the proportion of grassland adjoining the sampling site and the landscape heterogeneity (the latter two factors within a 500 m buffer zone surrounding each focal site). We found only marginal genetic differentiation among all local populations and no correlation between geographical and genetic distance. Habitat size, LUI and landscape characteristics had only weak effects on most of the parameters of genetic diversity of C. parallelus ; only expected heterozygosity and the grasshopper abundances were affected by interacting effects of LUI, habitat size and landscape characteristics. The lack of any strong relationships between LUI, abundance and the genetic structure might be due to large local populations of the species in the landscape, counteracting local differentiation and potential genetic drift effects.

2009 ◽  
Vol 59 (2) ◽  
pp. 169-187 ◽  
Author(s):  
Michal Kozakiewicz ◽  
Alicja Gryczyńska–Siemiątkowska ◽  
Hanna Panagiotopoulou ◽  
Anna Kozakiewicz ◽  
Robert Rutkowski ◽  
...  

AbstractHabitat barriers are considered to be an important factor causing the local reduction of genetic diversity by dividing a population into smaller sections and preventing gene flow between them. However, the “barrier effect” might be different in the case of different species. The effect of geographic distance and water barriers on the genetic structure of populations of two common rodent species – the yellow-necked mouse (Apodemus flavicollis) and the bank vole (Myodes glareolus) living in the area of a lake (on its islands and on two opposite shores) was investigated with the use of microsatellite fragment analysis. The two studied species are characterised by similar habitat requirements, but differ with regard to the socio-spatial structure of the population, individual mobility, capability to cross environmental barriers, and other factors. Trapping was performed for two years in spring and autumn in north-eastern Poland (21°E, 53°N). A total of 160 yellow-necked mouse individuals (7 microsatellite loci) and 346 bank vole individuals (9 microsatellite loci) were analysed. The results of the differentiation analyses (FST and RST) have shown that both the barrier which is formed by a ca. 300 m wide belt of water (between the island and the mainland) and the actual distance of approximately 10 km in continuous populations are sufficient to create genetic differentiation within both species. The differences between local populations living on opposite lake shores are the smallest; differences between any one of them and the island populations are more distinct. All of the genetic diversity indices (the mean number of alleles, mean allelic richness, as well as the observed and expected heterozygosity) of the local populations from the lakeshores were significantly higher than of the small island populations of these two species separated by the water barrier. The more profound “isolation effect” in the case of the island populations of the bank vole, in comparison to the yellow-necked mouse populations, seems to result not only from the lower mobility of the bank vole species, but may also be attributed to other differences in the animals' behaviour.


Genetics ◽  
1975 ◽  
Vol 79 (3) ◽  
pp. 477-491
Author(s):  
Donald A Levin

ABSTRACT Twenty enzyme loci were studied in 44 Illinois populations of Oenothera biennis; four were polymorphic. Most of the variation was distributed between populations. Fifty-nine percent of the populations had one genotype, 27% two genotypes and the remaining 16% from three to five genotypes; the average was 1.50. The proportion of genetic diversity present in single populations is.38 of that present in the state. Members of single populations were uniformly heterozygous for 1 to 4 loci. The mean heterozygosity per population ranged from 0 to 20%. For Illinois populations collectively, heterozygosity averaged 4.5%. There was much gene frequency heterogeneity between populations. The true standardized genetic variance among populations for alleles at polymorphic loci varied from.40 to.78. Populations from Cook County were much more similar inter se than those downstate, had fewer genotypes and polymorphic loci, and had less heterozygosity than downstate populations. The mean normalized genetic identity among Cook County populations was.987 versus.947 for downstate populations. The mean number of genotypes per population in Cook County was 1.06 versus 2.40 in downstate populations. There was only one polymorphic locus in Cook County, VLP. The genetic structure of Oe. biennis suggests that single populations are colonized by one, or at best a few individuals. Cook County populations are judged to be less variable than downstate populations because the mean age of the populations probably is less than that of those downstate.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiong Fu ◽  
Jie Deng ◽  
Min Chen ◽  
Yan Zhong ◽  
Guo-Hui Lu ◽  
...  

Abstract Background Rivers and streams facilitate movement of individuals and their genes across the landscape and are generally recognized as dispersal corridors for riparian plants. Nevertheless, some authors have reported directly contrasting results, which may be attributed to a complex mixture of factors, such as the mating system and dispersal mechanisms of propagules (seed and pollen), that make it difficult to predict the genetic diversity and population structure of riparian species. Here, we investigated a riparian self-fertilizing herb Caulokaempferia coenobialis, which does not use anemochory or zoochory for seed dispersal; such studies could contribute to an improved understanding of the effect of rivers or streams on population genetic diversity and structure in riparian plants. Using polymorphic ISSR and cpDNA loci, we studied the effect at a microgeographic scale of different stream systems (a linear stream, a dendritic stream, and complex transverse hydrological system) in subtropical monsoon forest on the genetic structure and connectivity of C. coenobialis populations across Dinghu Mountain (DH) and Nankun Mountain (NK). Results The results indicate that the most recent haplotypes (DH: H7, H8; NK: h6, h7, h11, h12) are not shared among local populations of C. coenobialis within each stream system. Furthermore, downstream local populations do not accumulate genetic diversity, whether in the linear streamside local populations across DH (H: 0.091 vs 0.136) or the dendritic streamside local populations across NK (H: 0.079 vs 0.112, 0.110). Our results show that the connectivity of local C. coenobialis populations across DH and NK can be attributed to historical gene flows, resulting in a lack of spatial genetic structure, despite self-fertilization. Selfing C. coenobialis can maintain high genetic diversity (H = 0.251; I = 0.382) through genetic differentiation (GST = 0.5915; FST = 0.663), which is intensified by local adaptation and neutral mutation and/or genetic drift in local populations at a microgeographic scale. Conclusion We suggest that streams are not acting as corridors for dispersal of C. coenobialis, and conservation strategies for maintaining genetic diversity of selfing species should be focused on the protection of all habitat types, especially isolated fragments in ecosystem processes.


2014 ◽  
Vol 21 (5) ◽  
pp. 601-609
Author(s):  
Wang Deyun ◽  
Peng Jie ◽  
Chen Yajing ◽  
Lü Guosheng ◽  
Zhang Xiaoping ◽  
...  

Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 119
Author(s):  
Adrianna Kilikowska ◽  
Monika Mioduchowska ◽  
Anna Wysocka ◽  
Agnieszka Kaczmarczyk-Ziemba ◽  
Joanna Rychlińska ◽  
...  

Mussels of the family Unionidae are important components of freshwater ecosystems. Alarmingly, the International Union for Conservation of Nature and Natural Resources Red List of Threatened Species identifies almost 200 unionid species as extinct, endangered, or threatened. Their decline is the result of human impact on freshwater habitats, and the decrease of host fish populations. The Thick Shelled River Mussel Unio crassus Philipsson, 1788 is one of the examples that has been reported to show a dramatic decline of populations. Hierarchical organization of riverine systems is supposed to reflect the genetic structure of populations inhabiting them. The main goal of this study was an assessment of the U. crassus genetic diversity in river ecosystems using hierarchical analysis. Different molecular markers, the nuclear ribosomal internal transcribed spacer ITS region, and mitochondrial DNA genes (cox1 and ndh1), were used to examine the distribution of U. crassus among-population genetic variation at multiple spatial scales (within rivers, among rivers within drainages, and between drainages of the Neman and Vistula rivers). We found high genetic structure between both drainages suggesting that in the case of the analyzed U. crassus populations we were dealing with at least two different genetic units. Only about 4% of the mtDNA variation was due to differences among populations within drainages. However, comparison of population differentiation within drainages for mtDNA also showed some genetic structure among populations within the Vistula drainage. Only one haplotype was shared among all Polish populations whereas the remainder were unique for each population despite the hydrological connection. Interestingly, some haplotypes were present in both drainages. In the case of U. crassus populations under study, the Mantel test revealed a relatively strong relationship between genetic and geographical distances. However, in detail, the pattern of genetic diversity seems to be much more complicated. Therefore, we suggest that the observed pattern of U. crassus genetic diversity distribution is shaped by both historical and current factors i.e. different routes of post glacial colonization and history of drainage systems, historical gene flow, and more recent habitat fragmentation due to anthropogenic factors.


2016 ◽  
pp. rtw062 ◽  
Author(s):  
Valentin H. Klaus ◽  
Deborah Schäfer ◽  
Till Kleinebecker ◽  
Markus Fischer ◽  
Daniel Prati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document