The environmental implications of upper Paleozoic plant-fossil assemblages with mixtures of wetland and drought-tolerant taxa in tropical Pangea

Geobios ◽  
2021 ◽  
Author(s):  
Arden R. Bashforth ◽  
William A. DiMichele ◽  
Cortland F. Eble ◽  
Howard J. Falcon-Lang ◽  
Cindy V. Looy ◽  
...  
1986 ◽  
Vol 15 ◽  
pp. 10-26 ◽  
Author(s):  
Robert A. Spicer ◽  
Anthony G. Greer

Plant fossil assemblages are biased samples of the capacity of the once living source vegetation to produce litter (leaves, flowers, pollen, spores, fruits, seeds, twigs, branches, trunks, roots etc.). The “image” that the depositional system “sees” of the vegetation is in terms of isolated plant organs (or parts of organs) that are produced in greater or lesser quantities depending on the organ type. For instance throughout the life of a tree hundreds of thousands of leaves, many millions of pollen grains but only one trunk are produced. Only very rarely do plant fossil assemblages consist of entire or nearly entire plants. Instead assemblages consist of a mixture of organs in various states of completeness derived from a number of different taxa (each of which produces different organs in different relative amounts) growing at various distances from the depositional site.


Geology ◽  
1982 ◽  
Vol 10 (12) ◽  
pp. 641 ◽  
Author(s):  
Hermann W. Pfefferkorn ◽  
Margaret C. Thomson

2010 ◽  
Vol 23 (2) ◽  
pp. 188-208 ◽  
Author(s):  
Benjamin Bomfleur ◽  
Christian Pott ◽  
Hans Kerp

AbstractThe Jurassic plant fossil record of Gondwana is generally meagre, which renders phytogeographic and palaeoclimatic interpretations difficult to date. Moreover, plant fossil assemblages mainly consist of impressions/compressions with rather limited palaeobiological and palaeoecological significance. We here present a detailed survey of new Early Jurassic plant assemblages from the Pliensbachian Shafer Peak Formation, north Victoria Land, Transantarctic Mountains. Some of the well-preserved fossils yield cuticle. The floras consist of isoetalean lycophytes, sphenophytes, several ferns, bennettitaleans, and conifers. In addition, three distinct kinds of conifer shoots and needles were obtained from bulk macerations. The composition of the plant communities is typical for Jurassic macrofloras of Gondwana, which underscores the general homogeneity of Southern Hemisphere vegetation during the mid-Mesozoic. Altogether, the plant fossil assemblages indicate humid and warm temperate conditions, which is in contrast to recent palaeoclimatic models that predict cool temperate climates for the continental interior of southern Gondwana during the Jurassic. However, there is no evidence for notable soil development or peat accumulation. The environmental conditions were apparently very unstable due to intense volcanic activity that resulted in frequent perturbation of landscape and vegetation, hampering the development of long-lived climax communities. Cuticles of bennettitaleans and conifers show xeromorphic features that may have been beneficial for growth in this volcanic environment.


1981 ◽  
Vol 15 (3) ◽  
pp. 311-326 ◽  
Author(s):  
Jim I. Mead

AbstractThe vertebrate fauna of the last 30,000 radiocarbon years in the Grand Canyon is reviewed. Faunas accompanied with 92 14C dates have been analyzed from nine cave sites (four systematically excavated) and 50 packrat middens. Reasonably precise chronological and environmental data of late Pleistocene and Holocene age were obtained through dung studies in Rampart, Muav, and Stanton's Caves; from the numerous packrat middens; and from a ringtail refuse deposit in Vulture Cave. The desert tortoise, 8 species of lizards, 12 species of snakes, 68 species of birds, and 33 species of mammals are identified. Extinct animals include the avian carrion feeder, Teratornis merriami, and the mammalian herbivores, Oreamnos harringtoni, Camelops cf. hesternus, Equus sp., and Nothrotheriops shastense. There is no apparent abrupt end to the late Pleistocene as observed in the Grand Canyon fossil faunal or floral record. Animal and plant taxa of the Grand Canyon responded individually to the changes in climate of the last 30,000 yr. Both animal and plant fossil assemblages indicate that a pre-full glacial, a full glacial, and a late glacial woodland community with many less dominant desert taxa were slowly replaced by a Holocene desert community. All woodland taxa were absent from the lower elevations of the Grand Canyon by 8500 yr B.P.


2015 ◽  
Author(s):  
Guido Grimm ◽  
Thomas Denk ◽  
Johannes Martin Bouchal ◽  
Alastair John Potts

The “Coexistence Approach” is a mutual climate range (MCR) technique combined with the nearest-living relative (NLR) concept. It has been widely used for palaeoclimate reconstructions based on Eurasian plant fossil assemblages, most of them palynofloras (studied using light microscopy). The results have been surprisingly uniform, typically converging to subtropical, per-humid or monsoonal conditions. Studies based on the coexistence approach have had a marked impact in literature, generating over 10,000 citations thus far. However, recent studies have pointed out inherent theoretical and practical problems entangled in the application of this widely used method. But so far little is known how results generated by the coexistence approach are affected by subjective errors, data errors, and violations of the basic assumptions. The majority of Coexistence Approach studies make use of the Palaeoflora database (the combination of which will be abbreviated to CA+PF). Testing results produced by CA+PF studies has been hindered by the general unavailability of the contents in the underlying Palaeoflora database; two exceptions are the mean-annual temperature tolerances and lists of assigned associations between fossils and nearest-living relatives. Using a recently published study on the Eocene of China, which provides the first usable insight into the data structure of the Palaeoflora database, we compare the theory and practice of Coexistence Approach using the Palaeoflora database (CA+PF). We show that CA+PF is riddled by association and climate data error. We reveal the flaws in the application of CA, which is often in stark contrast to the theory of the method. We show that CA+PF is highly vulnerable against numerous sources of errors, mainly because it lacks safeguards that could identify unreliable data. We demonstrate that the CA+PF produces coherent, pseudo-precise results even for artificially generated, random plant assemblages. Alternative MCR-NLR methods can surpass the most imminent deficits of CA, and may be used as a stop-gap until more accurate bioclimatic and distribution data on potential Eurasian NLRs, and theoretically- and statistically-robust methods will become available. Finally, general guidelines are provided for the future application of methods using the mutual climatic range with nearest living relatives approach when reconstructing climate from plant fossil assemblages.


Sign in / Sign up

Export Citation Format

Share Document