fossil assemblages
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 42)

H-INDEX

42
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Farid Saleh ◽  
Romain Vaucher ◽  
Muriel VIDAL ◽  
Khadija EL HARIRI ◽  
Lukáš Laibl ◽  
...  

Abstract The Fezouata Biota (Morocco) is an exceptionally well-preserved fossil community of Early Ordovician age and although its oldest units are comparable with Burgess Shale-type localities of the Cambrian Explosion, little attention has been paid to the younger units despite potential to reveal the conditions of the Ordovician Radiation. Herein, we describe a new middle to upper Floian Fezouata locality (Taichoute) encompassing an assemblage dominated by large bivalved euarthropods and giant filter-feeding radiodonts, which were transported and preserved in concretions associated with density-flow deposits. Taichoute captures the closing of the taphonomic window that characterizes exceptional fossil preservation during the Cambrian Explosion (i.e., carbonaceous compressions) as well as the faunal transition to assemblages dominated by typical Palaeozoic taxa.


2021 ◽  
Vol 61 (2) ◽  
pp. 187-194
Author(s):  
Marc Philippe

Between 1833 and 1836 in England, then in Prussia and finally in France, young botanists experimented with making plant fossils to understand better how such fossils could be formed and how to interpret fossil assemblages. These experiments are described and discussed. Despite these promising beginnings, plant taphonomy was not really developed as a science until much later.


Palaios ◽  
2021 ◽  
Vol 36 (10) ◽  
pp. 326-329
Author(s):  
MARK A. WILSON ◽  
ANNA M. COOKE ◽  
SHELLEY A. JUDGE ◽  
TIMOTHY J. PALMER

ABSTRACT Ooimmuration is here defined as a taphonomic process by which fossils are preserved within ooids. It is a form of lithoimmuration, although depending on the role of microbes in the formation of the ooid cortex, ooimmuration can also be considered a type of bioimmuration. Fossils enclosed within ooids are protected from bioerosion as well as the abrasion common in energetic depositional environments such as ooid shoals. Many taxa in some fossil assemblages may be known only because they were ooimmured. We describe as examples of ooimmuration fossils preserved in an oolite from the Middle Jurassic (Bajocian) Carmel Formation in southwestern Utah.


2021 ◽  
Vol 71 ◽  
pp. 23-46
Author(s):  
Mazlan Madon ◽  

In the “flysch” series of the West Crocker Formation (Eocene–Oligocene), Kota Kinabalu, Sabah, trace fossils are fairly common although not ubiquitous. The trace fossils commonly occur as hypichnial semi- or full-reliefs on the sole of thin turbiditic sandstone beds (mainly Bouma Tc division) in the thinly bedded heterolithic sandstone-mudstone facies interpreted as submarine fan lobe deposits. Their presence in mainly the thinly bedded facies of the fan system suggests preferential production and preservation in the fine-grained “distal” parts of the Crocker submarine fan system. Trace fossil assemblages characteristic of the Nereites ichnofacies indicate sedimentary environments mainly in bathyal to abyssal water depths (>2000 m). This ichnofacies is dominated by horizontal grazing, farming and feeding traces, ranging from solitary to branching tubular burrows (Ophiomorpha, Palaeophycus and Planolites) to meandering trails and tunnels (Nereites, Cosmorhaphe, Helminthopsis), as well as the spiriform burrows Spirophycus. Graphoglyptids are the most diagnostic of the Nereites ichnofacies, produced by sediment grazers and farmers (agrichnia) and often displaying intricate networks of mainly horizontal tunnels preserved as hypichnial semi-reliefs. They include the delicate spiral traces of Spirorhaphe, as well as the enigmatic hexagonal network burrow Paleodictyon. Other ichnogenera include Planolites, Thalassinoides and Ophiomorpha which are facies-crossing and not environment specific. Detailed observations of the trace fossil assemblages and the degree of bioturbation enabled different sub-ichnofacies of the Nereites ichnofacies to be distinguished. Ophiomorpha is more common in sandy “proximal” facies and tend to penetrate deeply into pre-existing turbidite beds, its presence suggests a well-oxygenated newly deposited turbidite substrate, probably in the axial region of the fan lobes. Hence, channel axis and proximal fan deposits tend to be dominated by the Ophiomorpha rudis sub-ichnofacies. The Paleodictyon sub-ichnofacies is more typical of the lower energy lobe/fan fringe subenvironments. Proximal but off-axis areas are characterized by a mixture of the Ophiomorpha rudis and Paleodictyon sub-ichnofacies.


Geobios ◽  
2021 ◽  
Author(s):  
Arden R. Bashforth ◽  
William A. DiMichele ◽  
Cortland F. Eble ◽  
Howard J. Falcon-Lang ◽  
Cindy V. Looy ◽  
...  

2021 ◽  
Vol 120 ◽  
pp. 104732
Author(s):  
Layla El Hajj ◽  
François Baudin ◽  
Raymond Gèze ◽  
Lionel Cavin ◽  
Jean Dejax ◽  
...  

Palaios ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 95-114
Author(s):  
GARETT M. BROWN

ABSTRACT The ecological structure of ancient marine communities is impacted by the environmental gradients controlling assemblage compositions and the heterogeneous distribution of sediment types. Closely spaced, replicate sampling of fauna has been suggested to mitigate the effects of such heterogeneity and improve gradient analyses, but this technique has rarely been combined with similar sampling of lithologic data. This study analyses lithological and faunal data to determine the environmental gradients controlling the composition of Mississippian fossil assemblages of the lower Madison Group in Montana. Eighty-one lithological and faunal samples were collected from four stratigraphic columns in Montana, which represent the deep-subtidal, foreshoal, and ooid-shoal depositional environments within one third-order depositional sequence. Cluster analysis identifies three distinct lithological associations across all depositional environments—crinoid-dominated carbonates, peloidal-crinoidal carbonates, and micritic-crinoidal carbonates. Cluster analysis and nonmetric multidimensional scaling (NMS) identifies a highly diverse brachiopod biofacies and a solitary coral-dominated biofacies along an onshore-offshore gradient. Carbonate point count data and orientation of solitary corals indicate that substrate and wave energy are two potential variables that covary with the onshore-offshore gradient. Overlaying lithological information on the NMS indicates a secondary gradient reflecting oxygen that is expressed by increasing bioturbation and gradation from brown to dark gray carbonates to medium-light gray carbonates. Taken together, these findings demonstrates how combining closely spaced, replicate sampling of lithologic and faunal data enhances multivariate analyses by uncovering underlying environmental gradients that control the variation in fossil assemblages.


2021 ◽  
Author(s):  
Vanessa Julie Roden ◽  
Alexander Nützel ◽  
Wolfgang Kiessling

<p>Taphonomic effects complicate the assessment of variations in biodiversity over time. Most pre-Cenozoic fossil assemblages have been altered through taphonomic effects, such as lithification and aragonite dissolution. Several studies have found alpha (local) and gamma (global) diversity in marine ecosystems to be low in the early Mesozoic and then increase throughout the Mesozoic, reaching a maximum in the Cenozoic.</p><p>The Middle to Late Triassic Cassian Formation, exposed in the Dolomites, Southern Alps, northern Italy, comprises tropical reef basin and transported platform assemblages characterized by high diversity and commonly excellent preservation of fossils. The Cassian Formation yields high alpha (mean species richness per locality: 96), beta (mean Jaccard dissimilarity: 0.95), and gamma (1421 invertebrate species) diversity. The high primary diversity is probably due to the tropical reef-associated setting, and its reduced taphonomic alteration caused 4.5 times higher biodiversity to be preserved than in comparable pre-Cenozoic settings. High beta diversity can be explained by the presence of various habitat types and may also have been driven by priority effects. The Cassian fauna, like most comparable modern ecosystems, features a large number of gastropods (39% of all invertebrates, 58% of mollusks are gastropods). Especially small species in the millimeter size range contribute to the large number of gastropod species in the Cassian Formation. Our results support the assumption that the Modern Evolutionary Fauna was already established early in the Mesozoic and that the scarcity of small gastropods in many fossil assemblages is a taphonomic phenomenon. This contradicts the view that the major radiation of gastropods and the generally very strong increase in biodiversity largely took place in the Cenozoic. We suggest that highly complex, gastropod-dominant marine benthic ecosystems are as old as Middle/Late Triassic, pointing to an earlier establishment of the Modern Evolutionary Fauna than previously assumed. An improved eco-space utilization by infaunalization and increased biotic interactions such as a predator/prey escalation may have contributed to the high biodiversity and may reflect early aspects of the Marine Mesozoic Revolution.</p>


Sign in / Sign up

Export Citation Format

Share Document