Spatio‐temporal transitions in Paleozoic Bivalvia: A field comparison of upper Ordovician and upper Paleozoic bivalve‐dominated fossil assemblages

1989 ◽  
Vol 2 (3) ◽  
pp. 227-260 ◽  
Author(s):  
Arnold I. Miller
Geobios ◽  
2021 ◽  
Author(s):  
Arden R. Bashforth ◽  
William A. DiMichele ◽  
Cortland F. Eble ◽  
Howard J. Falcon-Lang ◽  
Cindy V. Looy ◽  
...  

2009 ◽  
Vol 146 (3) ◽  
pp. 451-462 ◽  
Author(s):  
MATS E. ERIKSSON ◽  
OLLE HINTS

AbstractMicropalaeontological investigations of Upper Ordovician carbonate mud-mounds and enclosing strata of subsurface Gotland, Sweden, demonstrate that jaw-bearing polychaetes formed the most diverse faunal element associated with these build-ups. Although not present within the mound cores (intra-mound facies), scolecodonts, or polychaete jaws, occur abundantly immediately below and particularly above the mounds; the supra-mound facies also has the most diverse fossil assemblages. By contrast to the scolecodont distribution, the most diverse conodont faunas were recorded in the intra-mound facies. This reinforces the fact that scolecodont and conodont abundance and diversity numbers are commonly inverse to one another, suggesting that these metazoans occupied different niches and responded differently to taphonomical processes. The polychaete assemblage has no less than 27 species belonging to 12 genera, of which Oenonites, Mochtyella and Pistoprion are the most abundant. The assemblage has a characteristic Baltic signature and is similar in taxonomic composition to coeval ones from other areas of the Baltoscandian palaeobasin, such as that of present-day Estonia. A principal component analysis clusters the Gotland assemblage most closely to those recorded from shallow to transitional shelf environments of Estonia, indicating that the mud-mounds were formed in such environments.


1960 ◽  
Vol S7-II (7) ◽  
pp. 847-854
Author(s):  
Pierre Cavet

Abstract The upper Ordovician is well developed north of the Querigut granite massif in the French Pyrenees. Conglomerates, "perforated" schists, and dacitic rocks constitute the most typical facies. Caradocian deposits are also present, and are granitized in places. Pre-Caradocian formations are difficult to distinguish from upper Paleozoic deposits, but are known to occur. Gotlandian (Silurian), Devonian, and Dinantian (Carboniferous) deposits are also represented in the region.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document