Long-term effects of organic amendments on bacterial and fungal communities in a degraded Mediterranean soil

Geoderma ◽  
2018 ◽  
Vol 332 ◽  
pp. 20-28 ◽  
Author(s):  
María M. Montiel-Rozas ◽  
María T. Domínguez ◽  
Engracia Madejón ◽  
Paula Madejón ◽  
Roberta Pastorelli ◽  
...  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ernest D. Osburn ◽  
Frank O. Aylward ◽  
J. E. Barrett

AbstractLand use change has long-term effects on the structure of soil microbial communities, but the specific community assembly processes underlying these effects have not been identified. To investigate effects of historical land use on microbial community assembly, we sampled soils from several currently forested watersheds representing different historical land management regimes (e.g., undisturbed reference, logged, converted to agriculture). We characterized bacterial and fungal communities using amplicon sequencing and used a null model approach to quantify the relative importance of selection, dispersal, and drift processes on bacterial and fungal community assembly. We found that bacterial communities were structured by both selection and neutral (i.e., dispersal and drift) processes, while fungal communities were structured primarily by neutral processes. For both bacterial and fungal communities, selection was more important in historically disturbed soils compared with adjacent undisturbed sites, while dispersal processes were more important in undisturbed soils. Variation partitioning identified the drivers of selection to be changes in vegetation communities and soil properties (i.e., soil N availability) that occur following forest disturbance. Overall, this study casts new light on the effects of historical land use on soil microbial communities by identifying specific environmental factors that drive changes in community assembly.


Soil Research ◽  
2019 ◽  
Vol 57 (3) ◽  
pp. 228
Author(s):  
C. Celestina ◽  
P. W. G. Sale ◽  
J. R. Hunt ◽  
C. Tang ◽  
A. E. Franks

A large-scale field experiment was used to investigate the long-term effects of a single application of manure or inorganic fertiliser on microbial communities in the topsoil and subsoil of a cropping field in south-west Victoria. Poultry litter (20 t ha–1) and fertiliser (with equivalent total nutrients to the manure) was either surface broadcast or deep ripped into the subsoil before sowing in 2014. Soil samples were collected from the 0–10 and 25–40cm horizons in each treatment immediately after harvest of the third successive crop in January 2017. Next-generation sequencing of the 16S and ITS rRNA genes was used to characterise the bacterial and fungal communities in the soil. Amendment type and method of placement had a limited effect on soil microbial community structure and diversity, three years after treatments were applied. Fungal communities exhibited weak responses to the poultry litter and fertiliser in comparison to a nil control, but none of the treatments had any detectable effect on bacterial communities. Differences in structure and diversity of microbial communities were overwhelmingly due to their vertical distribution in the soil profile, and not the application of different amendments to the soil by deep ripping or surface broadcasting. The strength and timing of the soil disturbance, plant selection effects and farm management history likely contributed to the lack of measurable response in the soil microbial community.


Pedosphere ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Li MA ◽  
Lin-Zhang YANG ◽  
Li-Zhong XIA ◽  
Ming-Xing SHEN ◽  
Shi-Xue YIN ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1339
Author(s):  
Cassidy M. Buchanan ◽  
James A. Ippolito

Overgrazed rangelands can lead to soil degradation, yet long-term land application of organic amendments (i.e., biosolids) may play a pivotal role in improving degraded rangelands in terms of soil health. However, the long-term effects on soil health properties in response to single or repeated, low to excessive biosolids applications, on semi-arid, overgrazed grasslands have not been quantified. Using the Soil Management Assessment Framework (SMAF), soil physical, biological, chemical, nutrient, and overall soil health indices between biosolids applications (0, 2.5, 5, 10, 21, or 30 Mg ha−1) and application time (single: 1991, repeated: 2002) were determined. Results showed no significant changes in soil physical and nutrient health indices. However, the chemical soil health index was greater when biosolids were applied at rates <30 Mg ha−1 and within the single compared to repeated applications. The biological soil health index was positively affected by increasing biosolids application rates, was overall greater in the repeated as compared to the single application, and was maximized at 30 Mg ha−1. The overall soil health index was maximized at rates <30 Mg ha−1. When all indices were combined, and considering past plant community findings at this site, overall soil health appeared optimized at a biosolids application rate of ~10 Mg ha−1. The use of soil health tools can help determine a targeted organic amendment application rate to overgrazed rangelands so the material provides maximum benefits to soils, plants, animals, and the environment.


2009 ◽  
Vol 129 (4) ◽  
pp. 534-541 ◽  
Author(s):  
Lidong Bi ◽  
Bin Zhang ◽  
Guangrong Liu ◽  
Zuzhang Li ◽  
Yiren Liu ◽  
...  

2020 ◽  
Vol 271 ◽  
pp. 110920
Author(s):  
N. Rodríguez-Berbel ◽  
R. Ortega ◽  
M.E. Lucas-Borja ◽  
A. Solé-Benet ◽  
I. Miralles

2010 ◽  
Vol 30 (2) ◽  
pp. 401-422 ◽  
Author(s):  
Mariangela Diacono ◽  
Francesco Montemurro

Sign in / Sign up

Export Citation Format

Share Document