Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong'an–Dabie orogens

2015 ◽  
Vol 27 (3) ◽  
pp. 1236-1254 ◽  
Author(s):  
Li-Qun Dai ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng
Author(s):  
Feng Huang ◽  
Tyrone O. Rooney ◽  
Ji-Feng Xu ◽  
Yun-Chuan Zeng

The Lhasa Terrane in southern Tibet is the leading edge of the Tibet-Himalaya Orogen and represents a fragmentary record of terminal oceanic subduction. Thus, it is an ideal region for studying magmatism and geodynamic processes that occurred during the transition from oceanic subduction to continental collision and/or oceanic slab breakoff. Here we examine a suite of early Cenozoic mafic rocks (ca. 57 Ma) within the central part of Lhasa Terrane, southern Tibet, which erupted during a transitional phase between the onset of India-Asia continental collision and Neo-Tethyan slab breakoff. These rocks display a geochemical affinity with magmas produced by fluid-fluxed melting of the mantle wedge within a subduction zone environment. The whole-rock element and Sr-Nd isotope compositions of these mafic rocks are similar to those of Cretaceous subduction-related magmatism in southern Tibet, demonstrating the sustained influence of the Neo-Tethys Ocean slab on the mantle wedge during the onset of the collision of India and Asia. The results of our geochemical forward modeling constrain the conditions of melt generation at depths of 1.3−1.5 GPa with significant fluid additions from the Neo-Tethyan slab. These results provide the first petrological and geochemical evidence that slab flux-related magmatism continued despite the commencement of continental collision. While existing studies have suggested that magmas were derived from melting of the Neo-Tethyan slab during this period, our new results suggest that additional magma generation mechanisms were active during this transitional phase.


Geological and geochemical evidence suggest that the Oman ophiolite is a fragment of a submarine arc-basin complex formed above a short-lived subduction zone in the mid-Cretaceous. Detailed studies of the lava stratigraphy and the intrusive relationships of dykes, sills and high-level plutons provide further evidence for the magmatic and tectonic development of the complex in question. Four consecutive events can be recognized to have taken place before emplacement: (1) eruption of basalts of island arc affinity onto pre-existing (Triassic) oceanic crust; (2) creation of new oceanic crust by backarc spreading; (3) intrusion of magma into this back-arc oceanic crust accompanied by eruption of basalts and andesites from discrete volcanic centres; (4) further intrusion of magma accompanied by uplift and eruption of basalts and rhyolites in submarine graben. A combined structural and geochemical analysis of the dyke swarm indicates that extension took place in approximately a N-S (ridge) and an ESE-WNW (leaky transform) direction relative to an inferred direction of subduction to the NE, and that a small but significant proportion of the sheeted dykes were injected during the ‘arc’ rather than the earlier ‘back-arc spreading’ episode. These various observations can be explained in terms of the progressive response of a non-isotropic lithosphere to the stresses induced during subduction.


Lithos ◽  
2021 ◽  
pp. 106353
Author(s):  
Zhaoping Hu ◽  
Lingsen Zeng ◽  
Michael W. Förster ◽  
Linghao Zhao ◽  
Lie Gao ◽  
...  

2019 ◽  
Vol 132 (7-8) ◽  
pp. 1347-1364 ◽  
Author(s):  
Yu-Wei Tang ◽  
Long Chen ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng

Abstract Although continental crust is characterized by the widespread occurrence of granitoids, the causal relationship between continental crust growth and granitic magmatism still remains enigmatic. While fractional crystallization of basaltic magmas (with or without crustal contamination) and partial melting of mafic lower crust are two feasible mechanisms for the production of granitoids in continental arc regions, the problem has been encountered in discriminating between the two mechanisms by whole-rock geochemistry. This can be resolved by an integrated study of zircon U-Pb ages and Hf-O isotopes together with whole-rock major-trace elements and Sr-Nd-Pb isotopes, which is illustrated for Mesozoic granitoids from the Gangdese orogen in southern Tibet. The results provide geochemical evidence for prompt reworking of the juvenile mafic arc crust in the newly accreted continental margin. The target granitoids exhibit high contents of SiO2 (65.76–70.75 wt%) and Na2O + K2O (6.38–8.15 wt%) but low contents of MgO (0.19–0.98 wt%), Fe2O3 (0.88–3.13 wt%), CaO (2.00–3.82 wt%), Ni (<5.8 ppm), and Cr (≤10 ppm). They are enriched in large ion lithophile elements, Pb, and light rare earth elements but depleted in high field strength elements. The granitoids are relatively depleted in whole-rock Sr-Nd isotope compositions with low (87Sr/86Sr)i ratios of 0.7043–0.7048 and positive εNd(t) values of 0.5–2.6, and have relatively low 207Pb/204Pb and 208Pb/204Pb ratios at given 206Pb/204Pb ratios. Laser ablation–inductively coupled plasma–mass spectrometry and secondary ion mass spectrometry U-Pb dating on synmagmatic zircons yield ages of 77 ± 2–81 ± 1 Ma in the Late Cretaceous for their emplacement. Relict zircons have two groups of U-Pb ages in the late Mesozoic and the late Paleozoic, respectively. The whole-rock Sr-Nd isotopes in the granitoids are quite similar to those of Late Cretaceous mafic rocks in the Gangdese batholith. In addition, both synmagmatic zircons and relict zircons with Late Cretaceous U-Pb ages exhibit almost the same Hf-O isotope compositions to those of the slightly earlier mafic rocks. All these observations indicate that the granitoids were mainly derived from partial melting of the juvenile mafic arc crust. Therefore, reworking of the juvenile mafic arc crust is the mechanism for the origin of isotopically depleted granitoids in southern Tibet. It is this process that leads to differentiation of the juvenile mafic arc crust toward the felsic lithology in the continental arc. In this regard, the granitoids with depleted radiogenic isotope compositions do not necessarily contribute to the crustal growth at convergent plate boundaries.


2019 ◽  
Vol 132 (7-8) ◽  
pp. 1469-1488 ◽  
Author(s):  
Wei Fang ◽  
Li-Qun Dai ◽  
Yong-Fei Zheng ◽  
Zi-Fu Zhao ◽  
Li-Tao Ma

Abstract In contrast to the widespread occurrence of mafic arc magmatism during oceanic subduction, there is a general lack of such magmatism during continental subduction. This paradigm is challenged by the discovery of Early-Middle Triassic mafic igneous rocks from the southeastern margin of the North China Block (NCB), which was subducted by the South China Block (SCB) during the Triassic. Zircon U-Pb dating for these mafic rocks yields 247 ± 2–244 ± 5 Ma for their emplacement, coeval with the initial collision between the two continental blocks. These Triassic mafic rocks generally exhibit ocean island basalt (OIB)-like trace element distribution patterns, intermediate (87Sr/86Sr)i ratios of 0.7057–0.7091, weakly negative εNd(t) values of –1.2 to –3.8, and εHf(t) values of –1.3 to –3.2. Such geochemical features indicate origination from a metasomatic mantle source with involvement of felsic melts derived from dehydration melting of the previously subducting Paleo-Tethyan oceanic crust. The syn-magmatic zircons of Triassic age show variable Hf-O isotopic compositions, indicating that the crustal component was composed of both altered basaltic oceanic crust and terrigenous sediment. High Fe/Mn and Zn/Fe ratios suggest that the mantle source would mainly consist of ultramafic pyroxenites. The melt-mobile incompatible trace elements were further fractionated relative to melt-immobile trace elements during partial melting of these pyroxenites, giving rise to basaltic melts with OIB-like geochemical signatures. The mafic magmatism may be caused by tectonic extension due to rollback of the subducting Paleo-Tethyan oceanic slab in response to the initial collision of the NCB and SCB in the Early Triassic. Therefore, the syn-subduction mafic magmatism provides new geochemical evidence for tectonic transition from oceanic subduction to continental collision in east-central China.


Island Arc ◽  
2000 ◽  
Vol 9 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Shigeyuki Suzuki ◽  
Shizuo Takemura ◽  
Graciano P. Yumul ◽  
Sevillo D. David ◽  
Daniel K. Asiedu

Sign in / Sign up

Export Citation Format

Share Document