ultrahigh pressure
Recently Published Documents


TOTAL DOCUMENTS

1245
(FIVE YEARS 212)

H-INDEX

96
(FIVE YEARS 9)

Author(s):  
Qian Cheng ◽  
Yinshui Liu ◽  
Zhenyao Wang ◽  
Defa Wu ◽  
Yunxiang Ma

For ultrahigh-pressure piston pumps, in the reciprocating action of the piston, the fretting between the static face seal and the mating surface occurs with the change of the pressure in the piston chamber. This phenomenon will seriously affect the service life of the seal ring and lead to the failure of the pump. However, the failure of static seals used to seal ultrahigh-pressures is usually studied from the directions of shear, stress, or rubber material. These studies cannot explain the failure phenomenon of the sealing ring found in our experiment. This paper analyzed the failure of the face seal ring in a piston pump with a maximum pressure of 120 MPa. A two-dimensional axisymmetric finite element model was established based on the Mooney-Rivlin constitutive relation of the rubber material, and the fretting conditions of the sealing ring were analyzed. Combined with the wear scars observed by the scanning electron microscope the face seal ring’s dynamic failure mechanism on the ultrahigh-pressure piston pump was determined. A better sealing scheme was proposed and verified by the duration test of the pump, which provided a basis for the design of the sealing of the ultrahigh-pressure fluid with high-frequency fluctuations.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1418
Author(s):  
Vladimir Lyutoev ◽  
Tatyana Shumilova ◽  
Anton Mazur ◽  
Peter Tolstoy

In this study, we carried out the analysis of the impact melt vein glasses from the Kara impact crater (Russia) in comparison to low-pressure impact melt glasses (tektites) of the Zhamanshin crater (Kazakhstan). 27Al, 23Na, and 29Si MAS NMR spectra of the samples of these glasses were analyzed. The samples of the natural glass contained inclusions of crystalline phases, paramagnetic elements that greatly complicate and distort the NMR signals from the glass phase itself. Taking into account the Mossbauer distribution of Fe in these glasses, the analysis of the spectra of MAS NMR of glass network-former (Si, Al) and potential network-modifiers (Na) of nuclei leads to the conclusion that the Kara impact melt vein glasses are characterized by complete polymerization of (Si,Al)O4 tetrahedral structural units. The NMR features of the glasses are consistent with the vein hypothesis of their formation under conditions of high pressures and temperatures resulting in their fluidity, relatively slow solidification with partial melt differentiation, polymerization, and precipitation of mineral phases as the impact melt cools. The 70 Ma stability of the Kara impact vein glass can be explained by the stabilization of the glass network with primary fine-dispersed pyroxene and coesite precipitates and by the high polymerization level of the impact glass.


2021 ◽  
pp. 1-10
Author(s):  
Shaikh M. Rahman ◽  
Udaya B. Sathuvalli ◽  
P. V. Suryanarayana

Summary Temperature change and the pressure/volume/temperature (PVT) response of wellbore annular fluids are the primary variables that control annular pressure buildup in offshore wells. Though the physics of annular pressure buildup is well understood, there is some ambiguity in the PVT models of brines. While custom tests can be performed to determine the PVT response of brines, they are time-consuming and expensive. In this light, our paper presents a method to determine the density of brines from their chemical composition, as a function of pressure and temperature. It compares theoretical predictions with the results of tests on brines used in our industry and available test data from the oil and gas and other industries. In 1987, Kemp and Thomas used the principles of chemical thermodynamics to develop equations for the density of brines as a function of pressure and temperature and their electrolytic actions. However, their paper contained two (inadvertent, and probably typographical) errors. One of the errors lay in the set of the Debye-Hückel parameters, and the other was contained in the coefficients of the series expansion for the infinite dilution molal volume. Furthermore, they (inadvertently) did not mention the role of a crucial parameter that accounts for the interaction between the ionic constituents of the salt. As a result, nearly a generation of engineers in our industry has been unable to reproduce their valuable results or apply their technically rigorous results to other brine chemistries. In this paper, we return to the basic equations of chemical thermodynamics and the principles of stoichiometry and delineate the inadvertent errors that had crept into the Kemp and Thomas equations. We then present the rectified equations and reproduce their example with the corrected results. Further, we compare the predictions from the original Kemp and Thomas work with results from a leading chemical engineering model. Finally, we compare the results of theoretical models with test measurements from the laboratory and characterize the uncertainty inherent in each model. Thereby, we have rendered the Kemp and Thomas (1987) model useful to the well design community.


2021 ◽  
pp. jgs2021-094
Author(s):  
Renée Tamblyn ◽  
Martin Hand ◽  
Alexander Simpson ◽  
Sarah Gilbert ◽  
Ben Wade ◽  
...  

The development of in-situ laser ablation Lu–Hf geochronology of apatite, xenotime and garnet has opened avenues to quickly and directly date geological processes. We demonstrate the first use of campaign-style in-situ Lu–Hf geochronology of garnet across the high- to ultrahigh-pressure Western Gneiss Region in Norway. Mafic eclogites from this region have been the focus of much work, and were clearly formed during continental subduction during the Caledonian Orogen. However, abundant quartzofeldspathic and pelitic lithologies record a more complex history, with some preserving polymetamorphic age data, and most containing no indication of high-pressure mineral assemblages formed during subduction. Twenty metapelitic and felsic samples spanning 160 lateral kilometers across the Western Gneiss Region have been analysed using garnet Lu–Hf geochronology. The results reveal Caledonian ages for the majority of the garnets, suggesting some quartzofeldspathic and metapelitic lithologies were reactive and grew garnet during high- to ultrahigh-pressure metamorphism. However, two ultrahigh-pressure eclogite locations, Verpeneset and Fjørtoft, preserve both Caledonian and Neoproterozoic-aged garnets. Despite significant uncertainties on some of the Lu–Hf geochronologic ages, laser ablation Lu–Hf efficiently identifies the polymetamorphic history of parts of the Western Gneiss Region, illustrating the effectiveness of this novel analytical method for rapid mapping of metamorphic ages.Thematic collection: This article is part of the Caledonian Wilson cycle collection available at: https://www.lyellcollection.org/cc/caledonian-wilson-cycleSupplementary material:https://doi.org/10.6084/m9.figshare.c.5715453


Geology ◽  
2021 ◽  
Author(s):  
Peilin Jiang ◽  
Hanyong Liu ◽  
Henrik Skogby ◽  
Ren-Xu Chen ◽  
Xiaozhi Yang

Omphacite is a diagnostic mineral of high- and ultrahigh-pressure rocks, and its association with garnet is characteristic of eclogites from subduction-related massifs and volcano-entrained xenoliths. Omphacite can accommodate significant amounts of water as structurally bound hydroxyl (OH) groups, and is able to convey water into Earth’s interior. We show, for the first time, experimental evidence that the infrared absorption patterns of water in omphacite are temperature sensitive. This provides a new framework for discriminating water in natural omphacite equilibrated at different temperatures. We also demonstrate that in low-temperature omphacite, the integral absorbance ratio between the infrared OH absorption bands at 3620 cm–1 and 3450 cm–1 is linearly related to temperature. Water in omphacite of massif eclogites records the temperature of OH equilibrium, allowing reconstruction of the fluid-involved thermal history and tectonics of rock evolution.


Author(s):  
Yang Yang ◽  
Yi-Can Liu ◽  
Yang Li ◽  
C. Groppo ◽  
F. Rolfo

Post-collisional mountain-root collapse and subsequent massive partial melting occurred in the high-temperature (HT) ultrahigh-pressure (UHP) metamorphic terrane of the North Dabie complex zone (NDZ), central China. The NDZ was deeply subducted in the Triassic, producing widespread migmatites and various magmatic intrusions in the Cretaceous. Post-collisional metadiorites with distinctive large K-feldspar augen porphyroblasts, locally reported but rarely exposed in the NDZ, underwent a complex evolutional history. In this contribution, integrated studies including field investigation, petrographic observation and mineral analysis, zircon U-Pb geochronological and Hf isotopic analyses, and whole-rock elemental and Sr-Nd-Pb isotopic analyses of the metadiorites were carried out. Our results provide new constraints on the mountain-root collapse in the Dabie orogen. The metadiorites are enriched in large ion lithophile elements and light rare earth elements, whereas they are depleted in high field strength elements and heavy rare earth elements with significant Ba positive anomalies, a composition consistent with the lower continental crust. All the studied samples have moderately enriched initial 87Sr/86Sr ratios (0.707582−0.708099), low εNd(t) values (−15.3 to −20.4), and low initial Pb isotopic ratios (16.0978−16.8452, 15.3167−15.4544, and 37.1778−37.8397 for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb, respectively). However, they have highly negative εHf(t) values and Paleoproterozoic two-stage Hf model ages, which are only partially consistent with data from the associated UHP metamorphic rocks. Such features suggest the metadiorites resulted from a magma produced by mixing of Triassic UHP mafic lithologies and minor amounts of mantle-derived materials. Zircon morphological analysis and U-Pb sensitive high-resolution ion microprobe dating combined with conventional thermobarometry indicate that these upwelling melts crystallized at pressure-temperature (P-T) conditions of 5.4−5.7 kbar and 750−768 °C at ca. 130 Ma and subsequently suffered HT metamorphism at ca. 125 Ma. We conclude that the metadiorites’ precursors were derived from partial melting of the Triassic subducted Neoproterozoic mafic lower-crustal rocks, with addition of minor amounts of mantle-derived materials in the Early Cretaceous, in response to mountain-root collapse of the orogen. Based on petrographic textures and mineral compositions, it is moreover inferred that formation of the distinctive K-feldspar porphyroblasts is likely related to a two-stage process, i.e., crystallization derived from biotite breakdown after the formation of the metadiorite at T = 640−703 °C and P < 4.5 kbar and coarsening related to shear deformation.


2021 ◽  
Vol 176 (12) ◽  
Author(s):  
Jan Schönig ◽  
Hilmar von Eynatten ◽  
Raimon Tolosana-Delgado ◽  
Guido Meinhold

AbstractThe major-element chemical composition of garnet provides valuable petrogenetic information, particularly in metamorphic rocks. When facing detrital garnet, information about the bulk-rock composition and mineral paragenesis of the initial garnet-bearing host-rock is absent. This prevents the application of chemical thermo-barometric techniques and calls for quantitative empirical approaches. Here we present a garnet host-rock discrimination scheme that is based on a random forest machine-learning algorithm trained on a large dataset of 13,615 chemical analyses of garnet that covers a wide variety of garnet-bearing lithologies. Considering the out-of-bag error, the scheme correctly predicts the original garnet host-rock in (i) > 95% concerning the setting, that is either mantle, metamorphic, igneous, or metasomatic; (ii) > 84% concerning the metamorphic facies, that is either blueschist/greenschist, amphibolite, granulite, or eclogite/ultrahigh-pressure; and (iii) > 93% concerning the host-rock bulk composition, that is either intermediate–felsic/metasedimentary, mafic, ultramafic, alkaline, or calc–silicate. The wide coverage of potential host rocks, the detailed prediction classes, the high discrimination rates, and the successfully tested real-case applications demonstrate that the introduced scheme overcomes many issues related to previous schemes. This highlights the potential of transferring the applied discrimination strategy to the broad range of detrital minerals beyond garnet. For easy and quick usage, a freely accessible web app is provided that guides the user in five steps from garnet composition to prediction results including data visualization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yifeng Xiao ◽  
Shi He ◽  
Mo Li ◽  
Weiguo Sun ◽  
Zhichao Wu ◽  
...  

Abstract$$\hbox {MoSe}_2$$ MoSe 2 is a layered transition-metal dichalcogenide (TMD) with outstanding electronic and optical properties, which is widely used in field-effect transistor (FET). Here the structural evolution and phase transition of $$\hbox {MoSe}_2$$ MoSe 2 under high pressure are systematically studied by CALYPSO structural search method and first-principles calculations. The structural evolutions of $$\hbox {MoSe}_2$$ MoSe 2 show that the ground state structure under ambient pressure is the experimentally observed P6$$_3$$ 3 /mmc phase, which transfers to R3m phase at 1.9 GPa. The trigonal R3m phase of $$\hbox {MoSe}_2$$ MoSe 2 is stable up to 72.1 GPa, then, it transforms into a new P6$$_3$$ 3 /mmc phase with different atomic coordinates of Se atoms. This phase is extremely robust under ultrahigh pressure and finally changes to another trigonal R-3m phase under 491.1 GPa. The elastic constants and phonon dispersion curves indicate that the ambient pressure phase and three new high-pressure phases are all stable. The electronic band structure and projected density of states analyses reveal a pressure induced semiconducting to metallic transition under 72.1 GPa. These results offer a detailed structural evolution and phase diagram of $$\hbox {MoSe}_2$$ MoSe 2 under high pressure, which may also provide insights for exploration other TMDs under ultrahigh pressure.


Sign in / Sign up

Export Citation Format

Share Document