Reduction of cold ischemia–reperfusion injury by graft-expressing clusterin in heart transplantation

2011 ◽  
Vol 30 (7) ◽  
pp. 819-826 ◽  
Author(s):  
Shuyuan Li ◽  
Qiunong Guan ◽  
Zhishui Chen ◽  
Martin E. Gleave ◽  
Christopher Y.C. Nguan ◽  
...  
2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hao Zheng ◽  
Yale Su ◽  
Cuilin Zhu ◽  
Douglas Quan ◽  
Anton I. Skaro ◽  
...  

2009 ◽  
Vol 56 (S 01) ◽  
Author(s):  
S Loganathan ◽  
T Radovits ◽  
K Hirschberg ◽  
S Korkmaz ◽  
E Barnucz ◽  
...  

2020 ◽  
Vol 31 (3) ◽  
pp. 517-531 ◽  
Author(s):  
Sistiana Aiello ◽  
Manuel Alfredo Podestà ◽  
Pamela Y. Rodriguez-Ordonez ◽  
Francesca Pezzuto ◽  
Nadia Azzollini ◽  
...  

BackgroundIn donor kidneys subjected to ischemia-reperfusion injury during kidney transplant, phagocytes coexpressing the F4/80 and CD11c molecules mediate proinflammatory responses and trigger adaptive immunity in transplantation through antigen presentation. After injury, however, resident renal macrophages coexpressing these surface markers acquire a proreparative phenotype, which is pivotal in controlling inflammation and fibrosis. No data are currently available regarding the effects of transplant-induced ischemia-reperfusion injury on the ability of donor-derived resident renal macrophages to act as professional antigen-presenting cells.MethodsWe evaluated the phenotype and function of intragraft CD11c+F4/80+ renal macrophages after cold ischemia. We also assessed the modifications of donor renal macrophages after reversible ischemia-reperfusion injury in a mouse model of congeneic renal transplantation. To investigate the role played by IL-1R8, we conducted in vitro and in vivo studies comparing cells and grafts from wild-type and IL-R8–deficient donors.ResultsCold ischemia and reversible ischemia-reperfusion injury dampened antigen presentation by renal macrophages, skewed their polarization toward the M2 phenotype, and increased surface expression of IL-1R8, diminishing activation mediated by toll-like receptor 4. Ischemic IL-1R8–deficient donor renal macrophages acquired an M1 phenotype, effectively induced IFNγ and IL-17 responses, and failed to orchestrate tissue repair, resulting in severe graft fibrosis and aberrant humoral immune responses.ConclusionsIL-1R8 is a key regulator of donor renal macrophage functions after ischemia-reperfusion injury, crucial to guiding the phenotype and antigen-presenting role of these cells. It may therefore represent an intriguing pathway to explore with respect to modulating responses against autoantigens and alloantigens after kidney transplant.


Author(s):  
N. V. Grudinin ◽  
V. K. Bogdanov ◽  
M. G. Sharapov ◽  
N. S. Bunenkov ◽  
N. P. Mozheiko ◽  
...  

Peroxiredoxin 6 (Prdx6) is an antioxidant enzyme in the human body that performs a number of important functions in the cell. Prdx6 restores a wide range of peroxide substrates, thus playing a leading role in maintaining redox homeostasis in mammalian cells. In addition to peroxidase activity, Prdx6 has an activity of phospholipase A2, thus taking part in membrane phospholipid metabolism. Due to its peroxidase and phospholipase activity, Prdx6 participates in intracellular and intercellular signal transmission, thereby facilitating the initiation of regenerative processes in the cell, suppression of apoptosis and activation of cell proliferation. Given the functions performed, Prdx6 can effectively deal with oxidative stress caused by various factors, including ischemia-reperfusion injury. On an animal model of rat heterotopic heart transplantation, we showed the cardioprotective potential of exogenous recombinant Prdx6, introduced before transplantation and subsequent reperfusion injury of the heart. It has been demonstrated that exogenous Prdx6 effectively alleviates the severity of ischemia-reperfusion injury of the heart by 2–3 times, providing normalization of its structural and functional state during heterotopic transplantation. The use of recombinant Prdx6 can be an effective approach in preventing/alleviating ischemia-reperfusion injury of the heart, as well as in maintaining an isolated heart during transplantation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Fadhil G. Al-Amran ◽  
Najah R. Hadi ◽  
Haider S. H. Al-Qassam

Background. Global myocardial ischemia reperfusion injury after heart transplantation is believed to impair graft function and aggravate both acute and chronic rejection episodes. Objectives. To assess the possible protective potential of MK-886 and 3,5-diiodothyropropionic acid DITPA against global myocardial ischemia reperfusion injury after heart transplantation. Materials and Methods. Adult albino rats were randomized into 6 groups as follows: group I sham group; group II, control group; groups III and IV, control vehicles (1,2); group V, MK-886 treated group. Donor rats received MK-886 30 min before transplantation, and the same dose was repeated for recipients upon reperfusion; in group VI, DITPA treated group, donors and recipients rats were pretreated with DITPA for 7 days before transplantation. Results. Both MK-886 and DITPA significantly counteract the increase in the levels of cardiac TNF-α, IL-1β, and ICAM-1 and plasma level of cTnI (). Morphologic analysis showed that both MK-886 and DITPA markedly improved () the severity of cardiac injury in the heterotopically transplanted rats. Conclusions. The results of our study reveal that both MK-886 and DITPA may ameliorate global myocardial ischemia reperfusion injury after heart transplantation via interfering with inflammatory pathway.


1997 ◽  
Vol 100 (5) ◽  
pp. 1199-1203 ◽  
Author(s):  
M Takada ◽  
A Chandraker ◽  
K C Nadeau ◽  
M H Sayegh ◽  
N L Tilney

Sign in / Sign up

Export Citation Format

Share Document