Pharmacological Conditioning Reduces Damage from Ischemia-Reperfusion Injury in Porcine Skeletal Muscle and Ex-Vivo Functional Hearts

2020 ◽  
Vol 39 (4) ◽  
pp. S357
Author(s):  
D.A. Ramirez ◽  
W. Upchurch ◽  
M. Uchenik ◽  
K. Ziegler ◽  
T. Iles ◽  
...  
Injury ◽  
2012 ◽  
Vol 43 (6) ◽  
pp. 670-675 ◽  
Author(s):  
Syed Gillani ◽  
Jue Cao ◽  
Takashi Suzuki ◽  
David J. Hak

Molecules ◽  
2012 ◽  
Vol 17 (7) ◽  
pp. 8494-8505 ◽  
Author(s):  
Zhihong Tong ◽  
Fang Yu ◽  
Zhonghua Liu ◽  
Haidong Liang

2008 ◽  
Vol 74 (8) ◽  
pp. 1009-1016 ◽  
Author(s):  
Atsunori Nakao ◽  
Gaetano Faleo ◽  
Hiroko Shimizu ◽  
Kiichi Nakahira ◽  
Junichi Kohmoto ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
Author(s):  
Briana K. Shimada ◽  
Naaiko Yorichika ◽  
Jason K. Higa ◽  
Yuichi Baba ◽  
Motoi Kobayashi ◽  
...  

Author(s):  
Meredith A. Redd ◽  
Sarah E. Scheuer ◽  
Natalie J. Saez ◽  
Yusuke Yoshikawa ◽  
Han Sheng Chiu ◽  
...  

Background: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the build-up of acidic metabolites results in decreased intracellular and extracellular pH that can reach as low as 6.0-6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly impacts cardiac function. Methods: We used genetic and pharmacological methods to investigate the role of acid sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole organ level. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and post-conditioning therapeutic agents. Results: Analysis of human complex trait genetics indicate that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using hiPSC-CMs in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacological inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction (MI) and two models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as pre- or post-conditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no impact on cardiac ion channels regulating baseline electromechanical coupling and physiological performance. Conclusions: Collectively, our data provide compelling evidence for a novel pharmacological strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Sign in / Sign up

Export Citation Format

Share Document