genetic ablation
Recently Published Documents


TOTAL DOCUMENTS

1137
(FIVE YEARS 499)

H-INDEX

78
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Leyao Shen ◽  
Yilin Yu ◽  
Yunji Zhou ◽  
Shondra M Pruett-Miller ◽  
Guo-Fang Zhang ◽  
...  

Cellular differentiation is associated with the acquisition of a unique protein signature which is essential to attain the ultimate cellular function and activity of the differentiated cell. This is predicted to result in unique biosynthetic demands that arise during differentiation. Using a bioinformatic approach, we discovered osteoblast differentiation is associated with increased demand for the amino acid proline. When compared to other differentiated cells, osteoblast-associated proteins including RUNX2, OSX, OCN and COL1A1 are significantly enriched in proline. Using a genetic and metabolomic approach, we demonstrate that the neutral amino acid transporter SLC38A2 acts cell autonomously to provide proline to facilitate the efficient synthesis of proline-rich osteoblast proteins. Genetic ablation of SLC38A2 in osteoblasts limits both osteoblast differentiation and bone formation in mice. Mechanistically, proline is primarily incorporated into nascent protein with little metabolism observed. Collectively, these data highlight a requirement for proline in fulfilling the unique biosynthetic requirements that arise during osteoblast differentiation and bone formation.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Youjing Yang ◽  
Qianmin Li ◽  
Shuhui Wei ◽  
Kaimiao Chu ◽  
Lian Xue ◽  
...  

Lung inflammatory injury is a global public health concern. It is characterized by infiltration of diverse inflammatory cells and thickening of pulmonary septum along with oxidative stress to airway epithelial cells. STAT6 is a nuclear transcription factor that plays a crucial role in orchestrating the immune response, but its function in tissue inflammatory injury has not been comprehensively studied. Here, we demonstrated that STAT6 activation can protect against particle-induced lung inflammatory injury by resisting oxidative stress. Specifically, genetic ablation of STAT6 was observed to worsen particle-induced lung injury mainly by disrupting the lungs’ antioxidant capacity, as reflected by the downregulation of the Nrf2 signaling pathway, an increase in malondialdehyde levels, and a decrease in glutathione levels. Vitamin D receptor (VDR) has been previously proved to positively regulate Nrf2 signals. In this study, silencing VDR expression in human bronchial epithelial BEAS-2B cells consistently suppressed autophagy-mediated activation of the Nrf2 signaling pathway, thereby aggravating particle-induced cell damage. Mechanically, STAT6 activation promoted the nuclear translocation of VDR, which increased the transcription of autophagy-related genes and induced Nrf2 signals, and silencing VDR abolished these effects. Our research provides important insights into the role of STAT6 in oxidative damage and reveals its potential underlying mechanism. This information not only deepens the appreciation of STAT6 but also opens new avenues for the discovery of therapies for inflammatory respiratory system disorders.


2022 ◽  
Vol 12 ◽  
Author(s):  
Stephanie Musiol ◽  
Francesca Alessandrini ◽  
Constanze A. Jakwerth ◽  
Adam M. Chaker ◽  
Evelyn Schneider ◽  
...  

TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.


2022 ◽  
Author(s):  
Maximilien bencze ◽  
Cyrielle Hou ◽  
Baptiste Periou ◽  
Onnik Agbulut ◽  
Marianne Gervais ◽  
...  

Background Duchenne muscular dystrophy (DMD) is a muscle degenerative disorder that is caused by the absence of dystrophin. From early childhood, multiple rounds of myofibre necrosis and regeneration lead to fibrosis and fat deposition, irreversibly disturbing skeletal muscle function and impairing locomotion. Cell necrosis also affects respiratory muscles and cardiomyocytes, ultimately responsible for the death of DMD boys by respiratory or heart failure. Necroptosis is a genetically programmed form of necrosis requiring the receptor-interacting serine/threonine-protein kinase (RIPK)3 and is a promising new therapeutic target for multiple degenerative disorders. We previously demonstrated that necroptosis mediates hindlimb myofibre degeneration in distinct muscular dystrophies, including in DMD. However, this pathway was recently found to be required for myogenesis. Its prevention might therefore lead to detrimental side effects on muscle repair. Whether necroptosis also participates in the pathogenesis of respiratory and cardiac muscle dysfunction, and whether its long-term inhibition would ultimately be beneficial or detrimental to mdx mice are addressed here. Methods Herein, we examined the effects of RIPK3 depletion on an advanced stage of pathogenesis in mdx mice. Dystrophic mice aged 12 to 18 months were submitted to forced treadmill running to assess their locomotor function. mdx cardiomyopathy was also examined by echocardiography in 40-week-old mice. Limb skeletal muscles, diaphragm and heart were analyzed by histology and molecular biology to compare the phenotype of mdxRipk3+/+ mdxRipk3-/- mice. Results In 18-month-old mdxRipk3-/- mice, we found no sign of muscle regeneration defect compared to mdxRipk3+/+ littermates. mdxRipk3-/- mice had decreased fibrosis in limb muscles, without evidence of muscle atrophy. The size of diaphragm myofibres was slightly reduced and affected by less variability than mdx littermates. Fibrosis was also reduced in the diaphragm of RIPK3-deficient mdx mice. Notably, heart hypertrophy and left ventricle fibrosis were reduced in mdxRipk3-/- mice, and using echocardiography, we found a significant decrease of markers of cardiomyopathy by such as a reduction of the relative wall thickness and left ventricle mass. Conclusions Our data suggest that necroptosis is involved together in the pathogenic phenotype of locomotor, respiratory, and cardiac muscles in dystrophin-deficient mice. The long-term genetic ablation of RIPK3 does not generate evidence of sarcopenia or muscle impairment in mdx mice. Our data suggest that necroptosis may represent a new therapeutic target susceptible to improving the phenotype of myopathy and cardiomyopathy.


2022 ◽  
Author(s):  
fanglin zhang ◽  
Hongwei Ma ◽  
Yongheng Yang ◽  
Tiejian Nie ◽  
Rong Yan ◽  
...  

Abstract Hantaan virus (HTNV) is principally maintained and transmitted by rodents in nature, the infection of which is non-pathogenic in the field or laboratory mouse, but can cause hemorrhagic fever with renal syndrome (HFRS) in human beings, a severe systemic inflammatory disease with high mortality. It remains obscure how HTNV infection leads to disparate outcomes in distinct species. Here, we revealed a differential immune status in murine versus humans post HTNV infection, which was orchestrated by the macrophage reprogramming process and characterized by late-phase inactivation of NF-κB signaling. In HFRS patients, the immoderate and continuous activation of inflammatory monocyte/macrophage (M1) launched TNFα-centered cytokine storm and aggravated host immunopathologic injury, which can be life-threatening; however, in field or laboratory mice, the M1 activation and TNFα release were significantly suppressed at the late infection stage of HTNV, restricting excessive inflammation and blocking viral disease process, which also protected mice from secondary LPS challenge or polymicrobial sepsis. Mechanistically, we found that murine macrophage phenotype was dynamically manipulated by HTNV via the Notch-lncRNA-p65 axis. At the early stage of HTNV infection, the intracellular domain of Notch receptor (NICD) was activated by viral nucleocapsid (NP) stimulation and potentiated the NF-κB pathway by associating with and facilitating the interaction between IKKβ and p65. At the late stage, Notch signaling launched the expression of diverse murine-specific long non-coding RNAs (lncRNAs) and attenuated M1 polarization. Among them, lncRNA 30740.1 (termed as lnc-ip65, an inhibitor of p65) bound to p65 and hindered its phosphorylation, exerting negative feedback on the NF-κB pathway. Genetic ablation of lnc-ip65 shifted the balance of macrophage polarization from a pro-resolution to an inflammatory phenotype, leading to superabundant production of pro-inflammatory cytokines and increasing mice susceptibility to HTNV infection or bacterial sepsis. Collectively, our findings identify an immune braking function and mechanism for murine lncRNAs in inhibiting p65-mediated M1 activation, opening a novel therapeutic avenue of controlling the magnitude of immune responses for HFRS and other inflammatory diseases.


Bone Research ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Zuqiang Wang ◽  
Hangang Chen ◽  
Qiaoyan Tan ◽  
Junlan Huang ◽  
Siru Zhou ◽  
...  

AbstractThe intervertebral disc (IVD) is the largest avascular tissue. Hypoxia-inducible factors (HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease (DDD) is one of the leading causes of disability, and current therapies are ineffective. This study sought to explore the role of HIFs in DDD pathogenesis in mice. The findings of this study showed that among HIF family members, Hif1α was significantly upregulated in cartilaginous endplate (EP) and annulus fibrosus (AF) tissues from human DDD patients and two mouse models of DDD compared with controls. Conditional deletion of the E3 ubiquitin ligase Vhl in EP and AF tissues of adult mice resulted in upregulated Hif1α expression and age-dependent IVD degeneration. Aberrant Hif1α activation enhanced glycolytic metabolism and suppressed mitochondrial function. On the other hand, genetic ablation of the Hif1α gene delayed DDD pathogenesis in Vhl-deficient mice. Administration of 2-methoxyestradiol (2ME2), a selective Hif1α inhibitor, attenuated experimental IVD degeneration in mice. The findings of this study show that aberrant Hif1α activation in EP and AF tissues induces pathological changes in DDD, implying that inhibition of aberrant Hif1α activity is a potential therapeutic strategy for DDD.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Alicia Bedolla ◽  
Aleksandr Taranov ◽  
Fucheng Luo ◽  
Jiapeng Wang ◽  
Flavia Turcato ◽  
...  

Abstract Background Two recently developed novel rodent models have been reported to ablate microglia, either by genetically targeting microglia (via Cx3cr1-creER: iDTR + Dtx) or through pharmacologically targeting the CSF1R receptor with its inhibitor (PLX5622). Both models have been widely used in recent years to define essential functions of microglia and have led to high impact studies that have moved the field forward. Methods Using either Cx3cr1-iDTR mice in combination with Dtx or via the PLX5622 diet to pharmacologically ablate microglia, we compared the two models via MRI and histology to study the general anatomy of the brain and the CSF/ventricular systems. Additionally, we analyzed the cytokine profile in both microglia ablation models. Results We discovered that the genetic ablation (Cx3cr1-iDTR + Dtx), but not the pharmacological microglia ablation (PLX5622), displays a surprisingly rapid pathological condition in the brain represented by loss of CSF/ventricles without brain parenchymal swelling. This phenotype was observed both in MRI and histological analysis. To our surprise, we discovered that the iDTR allele alone leads to the loss of CSF/ventricles phenotype following diphtheria toxin (Dtx) treatment independent of cre expression. To examine the underlying mechanism for the loss of CSF in the Cx3cr1-iDTR ablation and iDTR models, we additionally investigated the cytokine profile in the Cx3cr1-iDTR + Dtx, iDTR + Dtx and the PLX models. We found increases of multiple cytokines in the Cx3cr1-iDTR + Dtx but not in the pharmacological ablation model nor the iDTR + Dtx mouse brains at the time of CSF loss (3 days after the first Dtx injection). This result suggests that the upregulation of cytokines is not the cause of the loss of CSF, which is supported by our data indicating that brain parenchyma swelling, or edema are not observed in the Cx3cr1-iDTR + Dtx microglia ablation model. Additionally, pharmacological inhibition of the KC/CXCR2 pathway (the most upregulated cytokine in the Cx3cr1-iDTR + Dtx model) did not resolve the CSF/ventricular loss phenotype in the genetic microglia ablation model. Instead, both the Cx3cr1-iDTR + Dtx ablation and iDTR + Dtx models showed increased activated IBA1 + cells in the choroid plexus (CP), suggesting that CP-related pathology might be the contributing factor for the observed CSF/ventricular shrinkage phenotype. Conclusions Our data, for the first time, reveal a robust and global CSF/ventricular space shrinkage pathology in the Cx3cr1-iDTR genetic ablation model caused by iDTR allele, but not in the PLX5622 ablation model, and suggest that this pathology is not due to brain edema formation but to CP related pathology. Given the wide utilization of the iDTR allele and the Cx3cr1-iDTR model, it is crucial to fully characterize this pathology to understand the underlying causal mechanisms. Specifically, caution is needed when utilizing this model to interpret subtle neurologic functional changes that are thought to be mediated by microglia but could, instead, be due to CSF/ventricular loss in the genetic ablation model.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Grace A. Christopher ◽  
Rebecca J. Noort ◽  
Jessica L. Esseltine

During embryonic germ layer development, cells communicate with each other and their environment to ensure proper lineage specification and tissue development. Connexin (Cx) proteins facilitate direct cell–cell communication through gap junction channels. While previous reports suggest that gap junctional intercellular communication may contribute to germ layer formation, there have been limited comprehensive expression analyses or genetic ablation studies on Cxs during human pluripotent stem cell (PSC) germ lineage specification. We screened the mRNA profile and protein expression patterns of select human Cx isoforms in undifferentiated human induced pluripotent stem cells (iPSCs), and after directed differentiation into the three embryonic germ lineages: ectoderm, definitive endoderm, and mesoderm. Transcript analyses by qPCR revealed upregulation of Cx45 and Cx62 in iPSC-derived ectoderm; Cx45 in mesoderm; and Cx30.3, Cx31, Cx32, Cx36, Cx37, and Cx40 in endoderm relative to control human iPSCs. Generated Cx43 (GJA1) CRISPR-Cas9 knockout iPSCs successfully differentiated into cells of all three germ layers, suggesting that Cx43 is dispensable during directed iPSC lineage specification. Furthermore, qPCR screening of select Cx transcripts in our GJA1-/- iPSCs showed no significant Cx upregulation in response to the loss of Cx43 protein. Future studies will reveal possible compensation by additional Cxs, suggesting targets for future CRISPR-Cas9 ablation studies in human iPSC lineage specification.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Wu ◽  
Benjamin Brand ◽  
Miriam Eckstein ◽  
Sophia M. Hochrein ◽  
Magdalena Shumanska ◽  
...  

T cell activation and differentiation is associated with metabolic reprogramming to cope with the increased bioenergetic demand and to provide metabolic intermediates for the biosynthesis of building blocks. Antigen receptor stimulation not only promotes the metabolic switch of lymphocytes but also triggers the uptake of calcium (Ca2+) from the cytosol into the mitochondrial matrix. Whether mitochondrial Ca2+ influx through the mitochondrial Ca2+ uniporter (MCU) controls T cell metabolism and effector function remained, however, enigmatic. Using mice with T cell-specific deletion of MCU, we here show that genetic inactivation of mitochondrial Ca2+ uptake increased cytosolic Ca2+ levels following antigen receptor stimulation and store-operated Ca2+ entry (SOCE). However, ablation of MCU and the elevation of cytosolic Ca2+ did not affect mitochondrial respiration, differentiation and effector function of inflammatory and regulatory T cell subsets in vitro and in animal models of T cell-mediated autoimmunity and viral infection. These data suggest that MCU-mediated mitochondrial Ca2+ uptake is largely dispensable for murine T cell function. Our study has also important technical implications. Previous studies relied mostly on pharmacological inhibition or transient knockdown of mitochondrial Ca2+ uptake, but our results using mice with genetic deletion of MCU did not recapitulate these findings. The discrepancy of our study to previous reports hint at compensatory mechanisms in MCU-deficient mice and/or off-target effects of current MCU inhibitors.


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Julia Bolik ◽  
Freia Krause ◽  
Marija Stevanovic ◽  
Monja Gandraß ◽  
Ilka Thomsen ◽  
...  

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell–induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document