scholarly journals Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions

Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05106
Author(s):  
S.I.A. Pereira ◽  
D. Abreu ◽  
H. Moreira ◽  
A. Vega ◽  
P.M.L. Castro
Author(s):  
Melissa M. Larrabee ◽  
◽  
Louise M. Nelson ◽  

Bacteria that colonize plant roots and promote plant growth and development, plant growth-promoting rhizobacteria (PGPR) can contribute to more sustainable intensification of agriculture while minimizing detrimental impacts associated with excessive fertilization. In this chapter we review recent research on the use of PGPR as biofertilizers to enhance root function and improve nutrient uptake. PGPR alter root architecture, root metabolism, nutrient use efficiency and enhance plant tolerance to abiotic stresses such as salinity and drought by a variety of mechanisms that are not yet well understood. Beneficial effects observed in the laboratory are not always seen consistently in the field due to varying environment and complex biotic interactions, limiting the widespread application of PGPR in agriculture. We highlight new research approaches that will facilitate our understanding of this complex community at the molecular level and from a holistic perspective. Applied research to facilitate registration and commercialization of biofertilizers is also considered.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1960
Author(s):  
Yasser Nehela ◽  
Yasser S. A. Mazrou ◽  
Tarek Alshaal ◽  
Asmaa M. S. Rady ◽  
Ahmed M. A. El-Sherif ◽  
...  

The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar) significantly improved the soil ecosystem and physicochemical properties and K+, Ca2+, and Mg2+ contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4+ g−1 dry soil d−1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g−1 dry soil d−1) in 2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control. PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar > PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS), relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment. These findings could be guidelines for cultivating not only maize but other cereal crops particularly in salt-affected soil and sodic-saline soil.


Sign in / Sign up

Export Citation Format

Share Document