scholarly journals Natural language processing for urban research: A systematic review

Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06322
Author(s):  
Meng Cai
2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


Heart ◽  
2021 ◽  
pp. heartjnl-2021-319769
Author(s):  
Meghan Reading Turchioe ◽  
Alexander Volodarskiy ◽  
Jyotishman Pathak ◽  
Drew N Wright ◽  
James Enlou Tcheng ◽  
...  

Natural language processing (NLP) is a set of automated methods to organise and evaluate the information contained in unstructured clinical notes, which are a rich source of real-world data from clinical care that may be used to improve outcomes and understanding of disease in cardiology. The purpose of this systematic review is to provide an understanding of NLP, review how it has been used to date within cardiology and illustrate the opportunities that this approach provides for both research and clinical care. We systematically searched six scholarly databases (ACM Digital Library, Arxiv, Embase, IEEE Explore, PubMed and Scopus) for studies published in 2015–2020 describing the development or application of NLP methods for clinical text focused on cardiac disease. Studies not published in English, lacking a description of NLP methods, non-cardiac focused and duplicates were excluded. Two independent reviewers extracted general study information, clinical details and NLP details and appraised quality using a checklist of quality indicators for NLP studies. We identified 37 studies developing and applying NLP in heart failure, imaging, coronary artery disease, electrophysiology, general cardiology and valvular heart disease. Most studies used NLP to identify patients with a specific diagnosis and extract disease severity using rule-based NLP methods. Some used NLP algorithms to predict clinical outcomes. A major limitation is the inability to aggregate findings across studies due to vastly different NLP methods, evaluation and reporting. This review reveals numerous opportunities for future NLP work in cardiology with more diverse patient samples, cardiac diseases, datasets, methods and applications.


2021 ◽  
Author(s):  
Muhammad Huzaifa Bashir ◽  
Aqil M. Azmi ◽  
Haq Nawaz ◽  
Wajdi Zaghouani ◽  
Mona Diab ◽  
...  

Arabic Natural Language Processing for Qur’anic Research: A Systematic Review


2021 ◽  
Author(s):  
Muhammad Huzaifa Bashir ◽  
Aqil M. Azmi ◽  
Haq Nawaz ◽  
Wajdi Zaghouani ◽  
Mona Diab ◽  
...  

Arabic Natural Language Processing for Qur’anic Research: A Systematic Review


10.2196/16816 ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. e16816 ◽  
Author(s):  
Jing Wang ◽  
Huan Deng ◽  
Bangtao Liu ◽  
Anbin Hu ◽  
Jun Liang ◽  
...  

Background Natural language processing (NLP) is an important traditional field in computer science, but its application in medical research has faced many challenges. With the extensive digitalization of medical information globally and increasing importance of understanding and mining big data in the medical field, NLP is becoming more crucial. Objective The goal of the research was to perform a systematic review on the use of NLP in medical research with the aim of understanding the global progress on NLP research outcomes, content, methods, and study groups involved. Methods A systematic review was conducted using the PubMed database as a search platform. All published studies on the application of NLP in medicine (except biomedicine) during the 20 years between 1999 and 2018 were retrieved. The data obtained from these published studies were cleaned and structured. Excel (Microsoft Corp) and VOSviewer (Nees Jan van Eck and Ludo Waltman) were used to perform bibliometric analysis of publication trends, author orders, countries, institutions, collaboration relationships, research hot spots, diseases studied, and research methods. Results A total of 3498 articles were obtained during initial screening, and 2336 articles were found to meet the study criteria after manual screening. The number of publications increased every year, with a significant growth after 2012 (number of publications ranged from 148 to a maximum of 302 annually). The United States has occupied the leading position since the inception of the field, with the largest number of articles published. The United States contributed to 63.01% (1472/2336) of all publications, followed by France (5.44%, 127/2336) and the United Kingdom (3.51%, 82/2336). The author with the largest number of articles published was Hongfang Liu (70), while Stéphane Meystre (17) and Hua Xu (33) published the largest number of articles as the first and corresponding authors. Among the first author’s affiliation institution, Columbia University published the largest number of articles, accounting for 4.54% (106/2336) of the total. Specifically, approximately one-fifth (17.68%, 413/2336) of the articles involved research on specific diseases, and the subject areas primarily focused on mental illness (16.46%, 68/413), breast cancer (5.81%, 24/413), and pneumonia (4.12%, 17/413). Conclusions NLP is in a period of robust development in the medical field, with an average of approximately 100 publications annually. Electronic medical records were the most used research materials, but social media such as Twitter have become important research materials since 2015. Cancer (24.94%, 103/413) was the most common subject area in NLP-assisted medical research on diseases, with breast cancers (23.30%, 24/103) and lung cancers (14.56%, 15/103) accounting for the highest proportions of studies. Columbia University and the talents trained therein were the most active and prolific research forces on NLP in the medical field.


2021 ◽  
pp. 817-828
Author(s):  
Abhishek Sharma ◽  
Amrita ◽  
Sudeshna Chakraborty ◽  
Shivam Kumar

Radiology ◽  
2016 ◽  
Vol 279 (2) ◽  
pp. 329-343 ◽  
Author(s):  
Ewoud Pons ◽  
Loes M. M. Braun ◽  
M. G. Myriam Hunink ◽  
Jan A. Kors

Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 444
Author(s):  
Isuri Anuradha Nanomi Arachchige ◽  
Priyadharshany Sandanapitchai ◽  
Ruvan Weerasinghe

Depression is a common mental health disorder that affects an individual’s moods, thought processes and behaviours negatively, and disrupts one’s ability to function optimally. In most cases, people with depression try to hide their symptoms and refrain from obtaining professional help due to the stigma related to mental health. The digital footprint we all leave behind, particularly in online support forums, provides a window for clinicians to observe and assess such behaviour in order to make potential mental health diagnoses. Natural language processing (NLP) and Machine learning (ML) techniques are able to bridge the existing gaps in converting language to a machine-understandable format in order to facilitate this. Our objective is to undertake a systematic review of the literature on NLP and ML approaches used for depression identification on Online Support Forums (OSF). A systematic search was performed to identify articles that examined ML and NLP techniques to identify depression disorder from OSF. Articles were selected according to the PRISMA workflow. For the purpose of the review, 29 articles were selected and analysed. From this systematic review, we further analyse which combination of features extracted from NLP and ML techniques are effective and scalable for state-of-the-art Depression Identification. We conclude by addressing some open issues that currently limit real-world implementation of such systems and point to future directions to this end.


Sign in / Sign up

Export Citation Format

Share Document