scholarly journals Mechanism of the Effects of Sodium Channel Blockade on the Arrhythmogenic Substrate of Brugada Syndrome

Heart Rhythm ◽  
2021 ◽  
Author(s):  
Koonlawee Nademanee ◽  
Gumpanart Veerakul ◽  
Akihiko Nogami ◽  
Qing Lou ◽  
Mélèze Hocini ◽  
...  
Author(s):  
A. C. Linnenbank ◽  
P. G. Postema ◽  
M. G. Hoogendijk ◽  
P. F. H. M. van Dessel ◽  
H. L. Tan ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 484
Author(s):  
Martijn H. van der Ree ◽  
Jeroen Vendrik ◽  
Jan A. Kors ◽  
Ahmad S. Amin ◽  
Arthur A. M. Wilde ◽  
...  

Patients with Brugada syndrome (BrS) can show a leftward deviation of the frontal QRS-axis upon provocation with sodium channel blockers. The cause of this axis change is unclear. In this study, we aimed to determine (1) the prevalence of this left axis deviation and (2) to evaluate its cause, using the insights that could be derived from vectorcardiograms. Hence, from a large cohort of patients who underwent ajmaline provocation testing (n = 1430), we selected patients in whom a type-1 BrS-ECG was evoked (n = 345). Depolarization and repolarization parameters were analyzed for reconstructed vectorcardiograms and were compared between patients with and without a >30° leftward axis shift. We found (1) that the prevalence of a left axis deviation during provocation testing was 18% and (2) that this left axis deviation was not explained by terminal conduction slowing in the right ventricular outflow tract (4th QRS-loop quartile: +17 ± 14 ms versus +13 ± 15 ms, nonsignificant) but was associated with a more proximal conduction slowing (1st QRS-loop quartile: +12[8;18] ms versus +8[4;12] ms, p < 0.001 and 3rd QRS-loop quartile: +12 ± 10 ms versus +5 ± 7 ms, p < 0.001). There was no important heterogeneity of the action potential morphology (no difference in the ventricular gradient), but a left axis deviation did result in a discordant repolarization (spatial QRS-T angle: 122[59;147]° versus 44[25;91]°, p < 0.001). Thus, although the development of the type-1 BrS-ECG is characterized by a terminal conduction delay in the right ventricle, BrS-patients with a left axis deviation upon sodium channel blocker provocation have an additional proximal conduction slowing, which is associated with a subsequent discordant repolarization. Whether this has implications for risk stratification is still undetermined.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Zaytseva ◽  
A V Karpushev ◽  
A V Karpushev ◽  
Y Fomicheva ◽  
Y Fomicheva ◽  
...  

Abstract Background Mutations in gene SCN5A, encoding cardiac potential-dependent sodium channel Nav1.5, are associated with various arrhythmogenic disorders among which the Brugada syndrome (BrS) and the Long QT syndrome (LQT) are the best characterized. BrS1 is associated with sodium channel dysfunction, which can be reflected by decreased current, impaired activation and enhanced inactivation. We found two novel mutations in our patients with BrS and explored their effect on fast and slow inactivation of cardiac sodium channel. Purpose The aim of this study was to investigate the effect of BrS (Y739D, L1582P) mutations on different inactivation processes in in vitro model. Methods Y739D and L1582P substitutions were introduced in SCN5A cDNA using site-directed mutagenesis. Sodium currents were recorded at room temperature in transfected HEK293-T cells using patch-clamp technique with holding potential −100 mV. In order to access the fast steady-state inactivation curve we used double-pulse protocol with 10 ms prepulses. To analyze voltage-dependence of slow inactivation we used two-pulse protocol with 10s prepulse, 20ms test pulse and 25ms interpulse at −100mV to allow recovery from fast inactivation. Electrophysiological measurements are presented as mean ±SEM. Results Y739D mutation affects highly conserved tyrosine 739 among voltage-gated sodium and calcium channels in the segment IIS2. Mutation L1582P located in the loop IVS4-S5, and leucine in this position is not conserved among voltage-gated channels superfamily. We have shown that Y739D leads to significant changes in both fast and slow inactivation, whereas L1582P enhanced slow inactivation only. Steady-state fast inactivation for Y739D was shifted on 8.9 mV towards more negative potentials compare with that for WT, while L1582P did not enhanced fast inactivation (V1/2 WT: −62.8±1.7 mV; Y739D: −71.7±2.3 mV; L1582P: −58.7±1.4 mV). Slow inactivation was increased for both substitutions (INa (+20mV)/INa (−100mV) WT: 0.45±0.03; Y739D: 0,34±0.09: L1582P: 0.38±0.04). Steady-state fast inactivation Conclusions Both mutations, observed in patients with Brugada syndrome, influence on the slow inactivation process. Enhanced fast inactivation was shown only for Y739D mutant. The more dramatic alterations in sodium channel biophysical characteristics are likely linked with mutated residue conservativity. Acknowledgement/Funding RSF #17-15-01292


Heart Rhythm ◽  
2009 ◽  
Vol 6 (4) ◽  
pp. 487-492 ◽  
Author(s):  
Hiroshi Morita ◽  
Satoshi Nagase ◽  
Daiji Miura ◽  
Aya Miura ◽  
Shigeki Hiramatsu ◽  
...  

2004 ◽  
Vol 255 (1) ◽  
pp. 137-142 ◽  
Author(s):  
N. Takehara ◽  
N. Makita ◽  
J. Kawabe ◽  
N. Sato ◽  
Y. Kawamura ◽  
...  

1992 ◽  
Vol 27 (1) ◽  
pp. 51-58 ◽  
Author(s):  
William Penz ◽  
Michael Pugsley ◽  
M.Z. Hsieh ◽  
M.J.A. Walker

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S289
Author(s):  
Martijn Hendrik van der Ree ◽  
Jeroen Vendrik ◽  
Tom E. Verstraelen ◽  
Jan A. Kors ◽  
Ahmad S. Amin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document