Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria

2018 ◽  
Vol 92 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoming Zhao ◽  
Zhongyu Qin ◽  
Weimin Liu ◽  
Xiaojian Liu ◽  
Bernard Moussian ◽  
...  
2020 ◽  
Vol 25 (7) ◽  
pp. 1329-1342
Author(s):  
Jia Chen ◽  
Xianyan Ye ◽  
Jing Wang ◽  
Bin Xia ◽  
Tianrong Xin

Diflubenzuron, a benzoylphenylurea insecticide that interferes with chitin biosynthesis, causes arthropods to moult abnormally and die. However, its mechanism of action in Tetranychus cinnabarinus is still unclear. In order to explore the effects of different sublethal concentrations of diflubenzuron on T. cinnabarinus, we conducted a high-throughput RNA-seq technology to identify the variations in transcriptomic profile of T. cinnabarinus larvae. The results revealed that 470 and 49 differentially expressed genes were identified in LC50-and LC70-treated groups, comparing with the control. We also identified and analyzed the detoxification enzymes involved in the transcritome of T. cinnabarinus, including 34 cytochrome P450 genes, 17 glutathione-s-transferase genes (GSTs), 12 acetylcholinesterase genes (AChEs) and 9 ABC transporter genes. In addition, differentially expressed genes analysis showed that the gene expression levels of detoxification enzymes were generally enhanced. At the same time, seven and eleven genes were involved in chitin synthesis and degradation ways, respectively. The expression level of most genes involved in chitin synthesis and degradation pathway were generally up-regulated after exposure to sublethal concentrations of diflubenzuron. Moreover, for transcriptome validation, the mRNA expression results of ten specially expressed genes by quantitative real-time PCR demonstrated that these gene expression trends were consistent with that of the transcriptome data. Together, all these results suggested that sublethal concentrations of diflubenzuron exposure affected gene expression of major detoxification enzymes and chitin metabolism genes in T. cinnabarinus larvae. These findings may be helpful to further understand the possible molecular mechanism of benzoylphenylurea insecticides in T. cinnabarinus, as well as in other spider mites.


2019 ◽  
Vol 19 (5) ◽  
Author(s):  
Bi-Ying Pan ◽  
Guo-Yong Li ◽  
Yan Wu ◽  
Zhong-Shi Zhou ◽  
Min Zhou ◽  
...  

Abstract Glucose-6-phosphatase (G6Pase) and hexokinase (HK) are two key enzymes in the glycolysis and gluconeogenesis pathways, which catalyze the synthesis and degradation of glucose in insects, respectively. G6Pase and HK play an important role in insect growth by regulating the metabolism of glucose, leading to the efficient metabolism of other macromolecules. However, it is unclear whether these genes could be investigated for pest control through their actions on chitin metabolism. We studied the potential functions of G6Pase and HK genes in the regulation of chitin metabolism pathways by RNAi technology. Interference with G6Pase expression did not affect trehalose and chitin metabolism pathways in brown planthopper, Nilaparvata lugens (Stål). However, knockdown of the HK gene resulted in a significant decrease of expression of genes associated with the trehalose metabolic pathway but had no significant effect on trehalase activity, trehalose content, or glucogen content. Additionally, HK knockdown resulting in downregulation of the genes involved in chitin metabolism in the brown planthopper. These insects also showed wing deformities and difficulty in molting to varying degrees. We suggest that the silencing of HK expression directly inhibited the decomposition of glucose, leading to impaired chitin synthesis.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 153
Author(s):  
Xiaojun Zhang ◽  
Jianbo Yuan ◽  
Fuhua Li ◽  
Jianhai Xiang

Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.


Sign in / Sign up

Export Citation Format

Share Document