scholarly journals A Deep Long Short-Term Memory based classifier for Wireless Intrusion Detection System

ICT Express ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 98-103 ◽  
Author(s):  
Sydney Mambwe Kasongo ◽  
Yanxia Sun
2021 ◽  
Author(s):  
Ashwini Bhaskar Abhale ◽  
S S Manivannan

Abstract Because of the ever increasing number of Internet users, Internet security is becoming more essential. To identify and detect attackers, many researchers utilized data mining methods. Existing data mining techniques are unable to provide a sufficient degree of detection precision. An intrusion detection system for wireless networks is being developed to ensure data transmission security. The Network Intrusion Detection Algorithm (NIDS) uses a deep classification system to classify network connections as good or harmful. Deep Convolution Neural Network (DCNN), Deep Recurrent Neural Network (DRNN), Deep Long Short-Term Memory (DLSTM), Deep Convolution Neural Network Long Short-Term Memory (DCNN LSTM), and Deep Gated Recurrent Unit (DGRU) methods that use NSLKDD data records to train models are proposed. The experiments were carried out for a total of 1000 epochs. During the experiment, we achieved a model accuracy of more than 98 percent. We also discovered that as the number of layers in a model grows, so does the accuracy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
FatimaEzzahra Laghrissi ◽  
Samira Douzi ◽  
Khadija Douzi ◽  
Badr Hssina

AbstractAn intrusion detection system (IDS) is a device or software application that monitors a network for malicious activity or policy violations. It scans a network or a system for a harmful activity or security breaching. IDS protects networks (Network-based intrusion detection system NIDS) or hosts (Host-based intrusion detection system HIDS), and work by either looking for signatures of known attacks or deviations from normal activity. Deep learning algorithms proved their effectiveness in intrusion detection compared to other machine learning methods. In this paper, we implemented deep learning solutions for detecting attacks based on Long Short-Term Memory (LSTM). PCA (principal component analysis) and Mutual information (MI) are used as dimensionality reduction and feature selection techniques. Our approach was tested on a benchmark data set, KDD99, and the experimental outcomes show that models based on PCA achieve the best accuracy for training and testing, in both binary and multiclass classification.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani

Smart grids, advanced information technology, have become the favored intrusion targets due to the Internet of Things (IoT) using sensor devices to collect data from a smart grid environment. These data are sent to the cloud, which is a huge network of super servers that provides different services to different smart infrastructures, such as smart homes and smart buildings. These can provide a large space for attackers to launch destructive cyberattacks. The novelty of this proposed research is the development of a robust framework system for detecting intrusions based on the IoT environment. An IoTID20 dataset attack was employed to develop the proposed system; it is a newly generated dataset from the IoT infrastructure. In this framework, three advanced deep learning algorithms were applied to classify the intrusion: a convolution neural network (CNN), a long short-term memory (LSTM), and a hybrid convolution neural network with the long short-term memory (CNN-LSTM) model. The complexity of the network dataset was dimensionality reduced, and to improve the proposed system, the particle swarm optimization method (PSO) was used to select relevant features from the network dataset. The obtained features were processed using deep learning algorithms. The experimental results showed that the proposed systems achieved accuracy as follows: CNN = 96.60%, LSTM = 99.82%, and CNN-LSTM = 98.80%. The proposed framework attained the desired performance on a new variable dataset, and the system will be implemented in our university IoT environment. The results of comparative predictions between the proposed framework and existing systems showed that the proposed system more efficiently and effectively enhanced the security of the IoT environment from attacks. The experimental results confirmed that the proposed framework based on deep learning algorithms for an intrusion detection system can effectively detect real-world attacks and is capable of enhancing the security of the IoT environment.


Sign in / Sign up

Export Citation Format

Share Document