A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-Directional Long Short-Term Memory Recurrent Neural Network

Author(s):  
Bipraneel Roy ◽  
Hon Cheung
Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1500 ◽  
Author(s):  
Halit Apaydin ◽  
Hajar Feizi ◽  
Mohammad Taghi Sattari ◽  
Muslume Sevba Colak ◽  
Shahaboddin Shamshirband ◽  
...  

Due to the stochastic nature and complexity of flow, as well as the existence of hydrological uncertainties, predicting streamflow in dam reservoirs, especially in semi-arid and arid areas, is essential for the optimal and timely use of surface water resources. In this research, daily streamflow to the Ermenek hydroelectric dam reservoir located in Turkey is simulated using deep recurrent neural network (RNN) architectures, including bidirectional long short-term memory (Bi-LSTM), gated recurrent unit (GRU), long short-term memory (LSTM), and simple recurrent neural networks (simple RNN). For this purpose, daily observational flow data are used during the period 2012–2018, and all models are coded in Python software programming language. Only delays of streamflow time series are used as the input of models. Then, based on the correlation coefficient (CC), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency coefficient (NS), results of deep-learning architectures are compared with one another and with an artificial neural network (ANN) with two hidden layers. Results indicate that the accuracy of deep-learning RNN methods are better and more accurate than ANN. Among methods used in deep learning, the LSTM method has the best accuracy, namely, the simulated streamflow to the dam reservoir with 90% accuracy in the training stage and 87% accuracy in the testing stage. However, the accuracies of ANN in training and testing stages are 86% and 85%, respectively. Considering that the Ermenek Dam is used for hydroelectric purposes and energy production, modeling inflow in the most realistic way may lead to an increase in energy production and income by optimizing water management. Hence, multi-percentage improvements can be extremely useful. According to results, deep-learning methods of RNNs can be used for estimating streamflow to the Ermenek Dam reservoir due to their accuracy.


2021 ◽  
Vol 5 (4) ◽  
pp. 380
Author(s):  
Abdulkareem A. Hezam ◽  
Salama A. Mostafa ◽  
Zirawani Baharum ◽  
Alde Alanda ◽  
Mohd Zaki Salikon

Distributed-Denial-of-Service impacts are undeniably significant, and because of the development of IoT devices, they are expected to continue to rise in the future. Even though many solutions have been developed to identify and prevent this assault, which is mainly targeted at IoT devices, the danger continues to exist and is now larger than ever. It is common practice to launch denial of service attacks in order to prevent legitimate requests from being completed. This is accomplished by swamping the targeted machines or resources with false requests in an attempt to overpower systems and prevent many or all legitimate requests from being completed. There have been many efforts to use machine learning to tackle puzzle-like middle-box problems and other Artificial Intelligence (AI) problems in the last few years. The modern botnets are so sophisticated that they may evolve daily, as in the case of the Mirai botnet, for example. This research presents a deep learning method based on a real-world dataset gathered by infecting nine Internet of Things devices with two of the most destructive DDoS botnets, Mirai and Bashlite, and then analyzing the results. This paper proposes the BiLSTM-CNN model that combines Bidirectional Long-Short Term Memory Recurrent Neural Network and Convolutional Neural Network (CNN). This model employs CNN for data processing and feature optimization, and the BiLSTM is used for classification. This model is evaluated by comparing its results with three standard deep learning models of CNN, Recurrent Neural Network (RNN), and long-Short Term Memory Recurrent Neural Network (LSTM–RNN). There is a huge need for more realistic datasets to fully test such models' capabilities, and where N-BaIoT comes, it also includes multi-device IoT data. The N-BaIoT dataset contains DDoS attacks with the two of the most used types of botnets: Bashlite and Mirai. The 10-fold cross-validation technique tests the four models. The obtained results show that the BiLSTM-CNN outperforms all other individual classifiers in every aspect in which it achieves an accuracy of 89.79% and an error rate of 0.1546 with a very high precision of 93.92% with an f1-score and recall of 85.73% and 89.11%, respectively. The RNN achieves the highest accuracy among the three individual models, with an accuracy of 89.77%, followed by LSTM, which achieves the second-highest accuracy of 89.71%. CNN, on the other hand, achieves the lowest accuracy among all classifiers of 89.50%.


Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 243 ◽  
Author(s):  
Pramita Sree Muhuri ◽  
Prosenjit Chatterjee ◽  
Xiaohong Yuan ◽  
Kaushik Roy ◽  
Albert Esterline

An intrusion detection system (IDS) identifies whether the network traffic behavior is normal or abnormal or identifies the attack types. Recently, deep learning has emerged as a successful approach in IDSs, having a high accuracy rate with its distinctive learning mechanism. In this research, we developed a new method for intrusion detection to classify the NSL-KDD dataset by combining a genetic algorithm (GA) for optimal feature selection and long short-term memory (LSTM) with a recurrent neural network (RNN). We found that using LSTM-RNN classifiers with the optimal feature set improves intrusion detection. The performance of the IDS was analyzed by calculating the accuracy, recall, precision, f-score, and confusion matrix. The NSL-KDD dataset was used to analyze the performances of the classifiers. An LSTM-RNN was used to classify the NSL-KDD datasets into binary (normal and abnormal) and multi-class (Normal, DoS, Probing, U2R, and R2L) sets. The results indicate that applying the GA increases the classification accuracy of LSTM-RNN in both binary and multi-class classification. The results of the LSTM-RNN classifier were also compared with the results using a support vector machine (SVM) and random forest (RF). For multi-class classification, the classification accuracy of LSTM-RNN with the GA model is much higher than SVM and RF. For binary classification, the classification accuracy of LSTM-RNN is similar to that of RF and higher than that of SVM.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani

Smart grids, advanced information technology, have become the favored intrusion targets due to the Internet of Things (IoT) using sensor devices to collect data from a smart grid environment. These data are sent to the cloud, which is a huge network of super servers that provides different services to different smart infrastructures, such as smart homes and smart buildings. These can provide a large space for attackers to launch destructive cyberattacks. The novelty of this proposed research is the development of a robust framework system for detecting intrusions based on the IoT environment. An IoTID20 dataset attack was employed to develop the proposed system; it is a newly generated dataset from the IoT infrastructure. In this framework, three advanced deep learning algorithms were applied to classify the intrusion: a convolution neural network (CNN), a long short-term memory (LSTM), and a hybrid convolution neural network with the long short-term memory (CNN-LSTM) model. The complexity of the network dataset was dimensionality reduced, and to improve the proposed system, the particle swarm optimization method (PSO) was used to select relevant features from the network dataset. The obtained features were processed using deep learning algorithms. The experimental results showed that the proposed systems achieved accuracy as follows: CNN = 96.60%, LSTM = 99.82%, and CNN-LSTM = 98.80%. The proposed framework attained the desired performance on a new variable dataset, and the system will be implemented in our university IoT environment. The results of comparative predictions between the proposed framework and existing systems showed that the proposed system more efficiently and effectively enhanced the security of the IoT environment from attacks. The experimental results confirmed that the proposed framework based on deep learning algorithms for an intrusion detection system can effectively detect real-world attacks and is capable of enhancing the security of the IoT environment.


Sign in / Sign up

Export Citation Format

Share Document