scholarly journals Higher-Order Constrained Variational Problems on Principal Bundles with Applications to Optimal Control of Underactuated Systems

2015 ◽  
Vol 48 (13) ◽  
pp. 87-92
Author(s):  
Leonardo Colombo ◽  
Rohit Gupta ◽  
Anthony Bloch
2014 ◽  
Vol 11 (04) ◽  
pp. 1450034 ◽  
Author(s):  
Leonardo Colombo ◽  
Pedro Daniel Prieto-Martínez

In this paper, we consider an intrinsic point of view to describe the equations of motion for higher-order variational problems with constraints on higher-order trivial principal bundles. Our techniques are an adaptation of the classical Skinner–Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics. As an interesting application we deduce the equations of motion for optimal control of underactuated mechanical systems defined on principal bundles.


2014 ◽  
Vol 6 (4) ◽  
pp. 451-478 ◽  
Author(s):  
Leonardo Colombo ◽  
◽  
David Martín de Diego ◽  

1963 ◽  
Vol 3 (4) ◽  
pp. 449-453
Author(s):  
M. A. Hanson

Certain optimization problems involving inequality constraints, known as optimal control problems have been extensively studied during recent years especially in relation to the calculation of optimal rocket thrusts and trajectories. A summary of these works is given by Berkovitz [1] who also establishes necessary conditions for the existence of solutions for a wide class of such problems.


2020 ◽  
Vol 26 ◽  
pp. 37 ◽  
Author(s):  
Elimhan N. Mahmudov

The present paper studies the Mayer problem with higher order evolution differential inclusions and functional constraints of optimal control theory (PFC); to this end first we use an interesting auxiliary problem with second order discrete-time and discrete approximate inclusions (PFD). Are proved necessary and sufficient conditions incorporating the Euler–Lagrange inclusion, the Hamiltonian inclusion, the transversality and complementary slackness conditions. The basic concept of obtaining optimal conditions is locally adjoint mappings and equivalence results. Then combining these results and passing to the limit in the discrete approximations we establish new sufficient optimality conditions for second order continuous-time evolution inclusions. This approach and results make a bridge between optimal control problem with higher order differential inclusion (PFC) and constrained mathematical programming problems in finite-dimensional spaces. Formulation of the transversality and complementary slackness conditions for second order differential inclusions play a substantial role in the next investigations without which it is hardly ever possible to get any optimality conditions; consequently, these results are generalized to the problem with an arbitrary higher order differential inclusion. Furthermore, application of these results is demonstrated by solving some semilinear problem with second and third order differential inclusions.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


Sign in / Sign up

Export Citation Format

Share Document