scholarly journals Post-Processing of non gradient-based Topology Optimization with Simulated Annealing

2021 ◽  
Vol 54 (1) ◽  
pp. 755-760
Author(s):  
Hossein R. Najafabadi ◽  
Tiago Goto ◽  
Mizael Falheiro ◽  
Thiago C. Martins ◽  
Ahmad Barari ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 5257
Author(s):  
Hossein R. Najafabadi ◽  
Tiago G. Goto ◽  
Mizael S. Falheiro ◽  
Thiago C. Martins ◽  
Ahmad Barari ◽  
...  

Topology optimization (TO) of engineering products is an important design task to maximize performance and efficiency, which can be divided into two main categories of gradient-based and non-gradient-based methods. In recent years, significant attention has been brought to the non-gradient-based methods, mainly because they do not demand access to the derivatives of the objective functions. This property makes them well compatible to the structure of knowledge in the digital design and simulation domains, particularly in Computer Aided Design and Engineering (CAD/CAE) environments. These methods allow for the generation and evaluation of new evolutionary solutions without using the sensitivity information. In this work, a new non-gradient TO methodology using a variation of Simulated Annealing (SA) is presented. This methodology adaptively adjusts newly-generated candidates based on the history of the current solutions and uses the crystallization heuristic to smartly control the convergence of the TO problem. If the changes in the previous solutions of an element and its neighborhood improve the results, the crystallization factor increases the changes in the newly random generated solutions. Otherwise, it decreases the value of changes in the recently generated solutions. This methodology wisely improves the random exploration and convergence of the solutions in TO. In order to study the role of the various parameters in the algorithm, a variety of experiments are conducted and results are analyzed. In multiple case studies, it is shown that the final results are well comparable to the results obtained from the classic gradient-based methods. As an additional feature, a density filter is added to the algorithm to remove discontinuities and gray areas in the final solution resulting in robust outcomes in adjustable resolutions.


Author(s):  
Giridhar Reddy ◽  
Jonathan Cagan

Abstract A method for the design of truss structures which encourages lateral exploration, pushes away from violated spaces, models design intentions, and produces solutions with a wide variety of characteristics is introduced. An improved shape annealing algorithm for truss topology generation and optimization, based on the techniques of shape grammars and simulated annealing, implements the method. The algorithm features a shape grammar to model design intentions, an ability to incorporate geometric constraints to avoid obstacles, and a shape optimization method using only simulated annealing with more consistent convergence characteristics; no traditional gradient-based techniques are employed. The improved algorithm is illustrated on various structural examples generating a variety of solutions based on a simple grammar.


Author(s):  
Shanglong Zhang ◽  
Julián A. Norato

Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.


Author(s):  
Benjamin M. Weiss ◽  
Joshua M. Hamel ◽  
Mark A. Ganter ◽  
Duane W. Storti

The topology optimization (TO) of structures to be produced using additive manufacturing (AM) is explored using a data-driven constraint function that predicts the minimum producible size of small features in different shapes and orientations. This shape- and orientation-dependent manufacturing constraint, derived from experimental data, is implemented within a TO framework using a modified version of the Moving Morphable Components (MMC) approach. Because the analytic constraint function is fully differentiable, gradient-based optimization can be used. The MMC approach is extended in this work to include a “bootstrapping” step, which provides initial component layouts to the MMC algorithm based on intermediate Solid Isotropic Material with Penalization (SIMP) topology optimization results. This “bootstrapping” approach improves convergence compared to reference MMC implementations. Results from two compliance design optimization example problems demonstrate the successful integration of the manufacturability constraint in the MMC approach, and the optimal designs produced show minor changes in topology and shape compared to designs produced using fixed-radius filters in the traditional SIMP approach. The use of this data-driven manufacturability constraint makes it possible to take better advantage of the achievable complexity in additive manufacturing processes, while resulting in typical penalties to the design objective function of around only 2% when compared to the unconstrained case.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Kazuhiro Saitou

This paper presents a gradient-based multi-component topology optimization (MTO) method for structures assembled from components made by powder bed additive manufacturing. It is built upon our previous work on the continuously-relaxed MTO framework utilizing the concept of fractional component membership. The previous attempt on the integration of the relaxed MTO framework with additive manufacturing constraints, however, suffered from numerical instability for larger size problems, limiting its application to 2D low-resolution examples. To overcome this difficulty, this paper proposes an improved MTO formulation based on a design field regularization and a nonlinear projection of component membership variables, with a focus on powder bed additive manufacturing. For each component, constraints on the maximum allowable build volume (i.e., length, width, and height), the elimination of enclosed voids, and the minimum printable feature size are imposed during the simultaneous optimization of the overall base topology and component partitioning. The scalability of the new MTO formulation is demonstrated by a few 2D examples with much higher resolution than previously reported, and the first reported 3D example of MTO.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Although insights uncovered by design cognition are often utilized to develop the methods used by human designers, using such insights to inform computational methodologies also has the potential to improve the performance of design algorithms. This paper uses insights from research on design cognition and design teams to inform a better simulated annealing search algorithm. Simulated annealing has already been established as a model of individual problem solving. This paper introduces the Heterogeneous Simulated Annealing Team (HSAT) algorithm, a multi-agent simulated annealing algorithm. Each agent controls an adaptive annealing schedule, allowing the team develop heterogeneous search strategies. Such diversity is a natural part of engineering design, and boosts performance in other multi-agent algorithms. Further, interaction between agents in HSAT is structured to mimic interaction between members of a design team. Performance is compared to several other simulated annealing algorithms, a random search algorithm, and a gradient-based algorithm. Compared to other algorithms, the team-based HSAT algorithm returns better average results with lower variance.


2019 ◽  
Vol 60 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Kaike Yang ◽  
Eduardo Fernandez ◽  
Cao Niu ◽  
Pierre Duysinx ◽  
Jihong Zhu ◽  
...  

Author(s):  
Xike Zhao ◽  
Hae Chang Gea ◽  
Wei Song

In this paper the Eigenvalue-Superposition of Convex Models (ESCM) based topology optimization method for solving topology optimization problems under external load uncertainties is presented. The load uncertainties are formulated using the non-probabilistic based unknown-but-bounded convex model. The sensitivities are derived and the problem is solved using gradient based algorithm. The proposed ESCM based method yields the material distribution which would optimize the worst structure response under the uncertain loads. Comparing to the deterministic based topology optimization formulation the ESCM based method provided more reasonable solutions when load uncertainties were involved. The simplicity, efficiency and versatility of the proposed ESCM based topology optimization method can be considered as a supplement to the sophisticated reliability based topology optimization methods.


Sign in / Sign up

Export Citation Format

Share Document