scholarly journals A Simulation Study on Turnpikes in Stochastic LQ Optimal Control

2021 ◽  
Vol 54 (3) ◽  
pp. 516-521
Author(s):  
Ruchuan Ou ◽  
Michael Heinrich Baumann ◽  
Lars Grüne ◽  
Timm Faulwasser
1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


Author(s):  
Arjun Krishnan ◽  
Ashwin Krishnan ◽  
Mark Costello

This article examines the fundamental aspects of controlling ground resonance in rotorcraft equipped with actively controlled landing gear. Ground resonance is a mechanical instability affecting rotorcraft on the ground. It occurs at certain rotor speeds, where the lead–lag motion of the rotor couples with the motion of fuselage creating a self-excited oscillation. Typically, passive or semi-active lag dampers are used to avoid instability; however, these are undesirable from a design and maintenance perspective. Innovations in active landing gear for rotorcraft, such as articulated robotic legs, have provided an alternate approach to avoid the instability, eliminating the need for lag dampers with respect to ground resonance. This article extends classic ground resonance to include movable landing gear and identifies key physical parameters affecting dynamic behavior. Applying LQ optimal control to this model, it is shown that ground resonance instability can be eliminated using active landing gear as the control mechanism, even when there is no lag damping present in the rotor. In addition, while superior performance is achieved when landing gear movement can occur both longitudinally and laterally, it is still possible to stabilize ground resonance with inputs in a single direction, albeit with reduced performance.


1974 ◽  
Vol 19 (6) ◽  
pp. 1165-1175 ◽  
Author(s):  
EDGAR C. TACKER ◽  
THOMAS D. LINTON ◽  
CHARLES W. SANDERS

1998 ◽  
Vol 335 (7) ◽  
pp. 1207-1213
Author(s):  
W.Q. Liu ◽  
K.L. Teo ◽  
W.Y. Yan ◽  
V. Sreeram

2010 ◽  
Vol 31 (6) ◽  
pp. 547-566 ◽  
Author(s):  
Charlotte Beauthier ◽  
Joseph J. Winkin

Sign in / Sign up

Export Citation Format

Share Document