Effect of surface roughness on interlaminar peel and shear strength of CFRP/Mg laminates

Author(s):  
Yingcai Pan ◽  
Guoqing Wu ◽  
Zheng Huang ◽  
Maoyuan Li ◽  
Sudong Ji ◽  
...  
Biomaterials ◽  
1994 ◽  
Vol 15 (14) ◽  
pp. 1187-1191 ◽  
Author(s):  
K. Hayashi ◽  
T. Inadome ◽  
H. Tsumura ◽  
Y. Nakashima ◽  
Y. Sugioka

2019 ◽  
Vol 2 (2) ◽  
pp. 87-91
Author(s):  
Jawad Abid ◽  
◽  
Hassan Raza ◽  
Awais Akhtar ◽  
Ghulam Abbas Gohar ◽  
...  

Author(s):  
A. Purnowidodo ◽  
S. Sofyan Arief ◽  
F. Hilmi Iman

In the present study, the effect of surface roughness of the metal lamina at the interface of fibre metal laminates (FMLs) on the crack propagation behaviours was investigated for different fibre orientation. The FMLs was made by combining the aluminium and the carbon fibre-epoxy composite lamina. The increasing of the aluminium surface roughness at the interface causes the tensile strength to increase for every fibre orientation. The highest tensile strength is 282 and 367 MPa., respectively for fibre orientation 0°/90° and -45°/45° when the surface roughness is 2.89 mm. The increasing surface roughness causes the development of the delamination taking place at the interface is more difficult, and it leads to the shear strength at the interface to increase. Because of this, the tensile strength increases. However, the lifetime is not only influenced by the interface shear strength but also the stress concentration just in front of the crack tip as well as the surface roughness itself leading to the crack to be initiated from the rougher surface. The longest fatigue life is 180 000 cycles in the case of the fibre orientation 0°/90° with the surface roughness of 1.78 mm, and in the case of fibre orientation of -45°/+45° the longest fatigue life is 420 000 cycles when the surface roughness is 0.33 mm. The results of the study show that the surface roughness affects the tensile strength and crack propagation behaviour.


Shinku ◽  
1987 ◽  
Vol 30 (10) ◽  
pp. 793-798 ◽  
Author(s):  
Masao HIRASAKA ◽  
Masao HASHIBA ◽  
Toshiroh YAMASHINA

2021 ◽  
pp. 096739112110055
Author(s):  
Gunce Ozan ◽  
Meltem Mert Eren ◽  
Cansu Vatansever ◽  
Ugur Erdemir

Surface sealants are reported to ensure surface smoothness and improve the surface quality of composite restorations. These sealants should also reduce the bacterial adhesion on composite surfaces however, there is not much information regarding their performance on bulk-fill composite materials. The aim of this study was to evaluate the effect of surface sealant application on surface roughness and bacterial adhesion of various restorative materials. Disc-shaped samples were prepared from a compomer, a conventional composite and three bulk-fill composites. Specimens of each group were divided into two groups (n = 9): with/without surface sealant (Biscover LV, [BLV]). Surface roughness values were examined by profilometry and two samples of each group were examined for bacterial adhesion on a confocal laser scanning microscope (CLSM). Bacterial counts were calculated by both broth cultivation and microscopic images. Results were analyzed with one-way ANOVA and Bonferroni/Dunn tests. Following the BLV application, there was a decrease in the surface roughness values of all groups however, only Tetric N-Ceram Bulk and Beautifil-Bulk groups showed significantly smoother surfaces (p < 0.001). There were no significant differences among material groups without BLV application. Evaluating bacterial adhesion after BLV application, conventional composite had the lowest values among all followed by the compomer group. Beautifil-Bulk had significantly the highest bacterial adhesion (p < 0.05), followed by Tetric N-Ceram Bulk group. Without BLV application, there was no significant difference among bacterial adhesion values of groups (p > 0.05). CLSM images showed cell viability in groups. Bulk-fill composites showed higher bacterial adhesion than conventional composite and compomer materials. The surface sealant was found to be highly effective in lowering bacterial adhesion, but not so superior in smoothing the surfaces of restorative materials. So, surface sealants could be used on the restorations of patients with high caries risk.


Sign in / Sign up

Export Citation Format

Share Document